北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 沙米尔·沙基洛夫

沙米尔·沙基洛夫

     助理研究员    
助理研究员 沙米尔·沙基洛夫

团队: 数学物理

办公室: A15-302

邮箱: shakirov@bimsa.cn

研究方向: 数学物理

个人主页: https://www.bimsa.net/people/ShamilShakirov/

CV

个人简介


我是一名数学家,研究表示论,重点研究几何关系,尤其是拓扑学(结、链和 3 流形的量子群不变量、曲面的映射类群、q-skein 和双仿射赫克代数)和代数几何(与上同调和 Nakajima 箭筒簇的 K 理论相关的量子 Virasoro 和 W 代数的表示)。数学物理(拓扑量子场论、可积系统、瞬子和弦数学相互作用)在这些领域的作用和重要性已得到越来越多的认可;我的研究很大程度上受到数学物理进展的启发,并受益于与物理学家的长期合作。这幅图景与我对概率接口的研究(可积概率系统、麦克唐纳过程和随机矩阵)以及对经典不变量理论(曲线和曲面的不变量、张量、判别式和代数方程的结式)的长期兴趣相得益彰。我最近的研究项目的主要成果包括:构造双仿射赫克代数的二类比 [14]、建立双椭圆广义麦克唐纳差分方程 [8]、开发一种计算麦克唐纳过程可观测量的新方法 [22]、证明平面曲线凯莱不变量的行列式公式 [24] 等。

研究兴趣


  • 表示论
  • 拓扑
  • 数学物理

教育经历


  • 2011 - 2015      University of California Berkeley      Mathematics      Ph.D      (Supervisor: Prof. Aganagic, Prof. Reshetikhin)
  • 2005 - 2009      Moscow Institute of Physics and Technology      Physics and Mathematics      M.Sc.      (Supervisor: Prof. Morozov)
  • 2002 - 2005      Kazan State University      Physics      Diploma      (Supervisor: Prof. Aminova)

工作经历


  • 2024 -      Beijing Institute of Mathematical Sciences and Applications      Assistant Professor      tenure track
  • 2023 - 2024      Institute for Information Transmission Problems      Senior Researcher
  • 2021 - 2022      University of Geneve Switzerland      Senior Researcher
  • 2019 - 2019      Uppsala University      Researcher
  • 2015 - 2018      Harvard University      Junior Fellow

荣誉与奖项


出版物


  • [1] S. Arthamonov, Sh. Shakirov, An Elliptic Generalization of A1 Spherical DAHA at K = 2, International Mathematics Research Notices, 2024(19), 13046-13084 (2024)
  • [2] Sh. Shakirov, Non-stationary difference equation for-Virasoro conformal blocks, Letters in Mathematical Physics, 114(5), 115 (2024)
  • [3] H.Awata, K.Hasegawa, H.Kanno, R.Ohkawa, Sh.Shakirov, J.Shiraishi, Y.Yamada, Non-stationary difference equation and affine Laumon space II: Quantum Knizhnik-Zamolodchikov equation, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 20, 077 (2024)
  • [4] A Mironov, A Morozov, A Popolitov, S Shakirov, Deformation of superintegrability in the Miwa-deformed Gaussian matrix model, Physical Review D, 110(4), 046027 (2024)
  • [5] A Mironov, A Morozov, A Popolitov, S Shakirov, Summing up perturbation series around superintegrable point, Physics Letters B, 852, 138593 (2024)
  • [6] S. Arthamonov, Sh. Shakirov, An Elliptic Generalization of A1 Spherical DAHA at K=2, IMRN, 19, 13046–13084 (2024)
  • [7] H Awata, K Hasegawa, H Kanno, R Ohkawa, S Shakirov, J Shiraishi et al., Non-stationary difference equation and affine Laumon space: quantization of discrete Painlevé equation, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 19, 089 (2023)
  • [8] H.Awata, K.Hasegawa, H.Kanno, R.Ohkawa, Sh.Shakirov, J.Shiraishi, Y.Yamada, Non-stationary difference equation and affine Laumon space: Quantization of discrete Painlev’e equation, SIGMA, 19, 089 (2023)
  • [9] A. Gorsky, P. Koroteev, O. Koroteeva, Sh. Shakirov, Double Inozemtsev limits of the quantum DELL system, Physics Letters B, 826, 136919 (2022)
  • [10] S Shakirov, A Sleptsov, Quantum Racah matrices and 3-strand braids in representation [3, 3], Journal of Geometry and Physics, 166, 104273 (2021)
  • [11] A.Morozov, A.Popolitov and Sh. Shakirov, Harer-Zagier formulas for knot matrix models, Physics Letters B, 818, 136370 (2021)
  • [12] C. Kozcaz, Sh. Shakirov, C. Vafa and W. Yan, Refined topological branes, Communications in Mathematical Physics, 385, 937-961 (2021)
  • [13] Sh. Shakirov and A. Sleptsov, Quantum Racah matrices and 3-strand braids in representation [3,3], J. Geom. Phys., 166, 104273 (2021)
  • [14] A.Morozov, A.Popolitov and Sh. Shakirov, Quantization of Harer-Zagier formulas, Physics Letters B, 811, 135932 (2020)
  • [15] S Arthamonov, S Shakirov, Refined Chern–Simons theory in genus two, Journal of Knot Theory and Its Ramifications, 29(7), 2050044 (2020)
  • [16] P.Koroteev and Sh.Shakirov, The quantum DELL system, Letters in Mathematical Physics, 110(5), 969-999 (2020)
  • [17] R. Lodin, A. Popolitov, Sh. Shakirov and M. Zabzine, Solving q-Virasoro constraints, Letters in Mathematical Physics, 110(1), 179-210 (2020)
  • [18] S.Arthamonov and Sh.Shakirov, Refined Chern-Simons Theory in Genus Two, J. Knot Theory Ram., 29(07), 2050044 (2020)
  • [19] S Arthamonov, S Shakirov, Genus two generalization of$ A 1 $spherical DAHA, Selecta Mathematica, 25, 1-29 (2019)
  • [20] S.Arthamonov and Sh.Shakirov, Genus Two Generalization of A1 spherical DAHA, Selecta Mathematica, 25, 17 (2019)
  • [21] A Morozov, A Popolitov, S Shakirov, On (q, t)-deformation of Gaussian matrix model, Physics Letters B, 784, 342-344 (2018)
  • [22] C. Cordova, B. Heidenreich, A. Popolitov, Sh. Shakirov, Orbifolds and exact solutions of strongly-coupled matrix models, Communications in Mathematical Physics, 361, 1235-1274 (2018)
  • [23] L Bishler, A Morozov, S Shakirov, A Sleptsov, On the block structure of the quantum$ℛ$-matrix in the three-strand braids, International Journal of Modern Physics A, 33(17), 1850105 (2018)
  • [24] C. Kozcaz, Sh. Shakirov and W. Yan, Argyres-Douglas theories, modularity of minimal models and refined Chern-Simons, arXiv preprint arXiv:1801.08316, 26, 643-672 (2018)
  • [25] L. Bishler, An. Morozov, A. Sleptsov and Sh. Shakirov, On the block structure of the quantum R-matrix in the three-strand braids, Int. J. Mod. Phys. A, 33(17), 1850105 (2018)
  • [26] A. Morozov, A. Popolitov and Sh. Shakirov, On (q,t)-deformation of Gaussian matrix model, Phys. Lett. B, 784, 342-344 (2018)
  • [27] A Borodin, I Corwin, V Gorin, S Shakirov, Observables of Macdonald processes, Transactions of the American Mathematical Society, 368(3), 1517-1558 (2016)
  • [28] M. Aganagic and Sh. Shakirov, Gauge/Vortex duality and AGT, , 419-448 (2015)
  • [29] A Popolitov, S Shakirov, On undulation invariants of plane curves, Michigan Mathematical Journal, 64(1), 143-153 (2015)
  • [30] M Aganagic, S Shakirov, Knot homology and refined Chern–Simons index, Communications in Mathematical Physics, 333, 187-228 (2015)
  • [31] S Shakirov, Applications of Macdonald ensembles, University of California, Berkeley (2015)
  • [32] M Aganagic, N Haouzi, S Shakirov, $A_n$-Triality, arXiv preprint arXiv:1403.3657 (2014)
  • [33] S Shakirov, Colored knot amplitudes and Hall-Littlewood polynomials, arXiv preprint arXiv:1308.3838 (2013)
  • [34] M Aganagic, S Shakirov, Refined Chern-Simons theory and topological string, arXiv preprint arXiv:1210.2733 (2012)
  • [35] A Mironov, A Morozov, S Shakirov, Torus HOMFLYPT as the Hall–Littlewood polynomials, Journal of Physics A: Mathematical and Theoretical, 45(35), 355202 (2012)
  • [36] A Mironov, A Morozov, S Shakirov, A Sleptsov, Interplay between MacDonald and Hall-Littlewood expansions of extended torus superpolynomials, Journal of High Energy Physics, 2012(5), 1-12 (2012)
  • [37] AD Mironov, AY Morozov, AV Popolitov, SR Shakirov, Resolvents and Seiberg-Witten representation for a Gaussian-ensemble, Theoretical and Mathematical Physics, 171, 505-522 (2012)
  • [38] A Morozov, S Shakirov, Resultants and contour integrals, Functional Analysis and Its Applications, 46(1), 33-40 (2012)
  • [39] A Mironov, A Morozov, S Shakirov, A Smirnov, Proving AGT conjecture as HS duality: extension to five dimensions, Nuclear Physics B, 855(1), 128-151 (2012)
  • [40] A Mironov, A Morozov, S Shakirov, Towards a proof of AGT conjecture by methods of matrix models, International Journal of Modern Physics A, 27 (2012)
  • [41] M Aganagic, S Shakirov, Refined Chern-Simons theory and knot homology, Proc. Symp. Pure Math, 85, 3-32 (2012)
  • [42] S Shakirov, Beta deformation and superpolynomials of (n, m) torus knots, arXiv preprint arXiv:1111.7035 (2011)
  • [43] M Aganagic, S Shakirov, Knot homology from refined Chern-Simons theory, arXiv preprint arXiv:1105.5117 (2011)
  • [44] A Mironov, A Morozov, S Shakirov, Brezin-Gross-Witten model as “pure gauge” limit of Selberg integrals, Journal of High Energy Physics, 2011(3), 1-25 (2011)
  • [45] A Morozov, S Shakirov, Analogue of the identity Log Det= Trace Log for resultants, Journal of Geometry and Physics, 61(3), 708-726 (2011)
  • [46] S Shakirov, Exact solution for mean energy of 2d Dyson gas at β= 1, Physics Letters A, 375(6), 984-989 (2011)
  • [47] A Mironov, A Morozov, S Shakirov, A direct proof of AGT conjecture at β= 1, Journal of High Energy Physics, 2011(2), 1-41 (2011)
  • [48] A Mironov, A Morozov, S Shakirov, On the ‘Dotsenko–Fateev’representation of the toric conformal blocks, Journal of Physics A: Mathematical and Theoretical, 44(8), 085401 (2011)
  • [49] A Morozov, S Shakirov, The matrix model version of AGT conjecture and CIV-DV prepotential, Journal of High Energy Physics, 2010(8), 1-37 (2010)
  • [50] A Morozov, S Shakirov, From Brezin-Hikami to Harer-Zagier formulas for Gaussian correlators, arXiv preprint arXiv:1007.4100 (2010)
  • [51] A Mironov, A Morozov, S Shakirov, Conformal blocks as Dotsenko–Fateev integral discriminants, International Journal of Modern Physics A, 25(16), 3173-3207 (2010)
  • [52] SR Shakirov, Nonperturbative approach to finite-dimensional non-Gaussian integrals, Theoretical and Mathematical Physics, 163(3), 804-812 (2010)
  • [53] AY Morozov, SR Shakirov, New and old results in resultant theory, Theoretical and Mathematical Physics, 163, 587-617 (2010)
  • [54] A Mironov, A Morozov, S Shakirov, Matrix model conjecture for exact BS periods and Nekrasov functions, Journal of High Energy Physics, 2010(2), 1-26 (2010)
  • [55] A Morozov, S Shakirov, Introduction to integral discriminants, Journal of High Energy Physics, 2009(12), 002 (2009)
  • [56] A Morozov, S Shakirov, Exact 2-point function in Hermitian matrix model, Journal of High Energy Physics, 2009(12), 003 (2009)
  • [57] ET Akhmedov, S Shakirov, Gluings of surfaces with polygonal boundaries, Functional Analysis and Its Applications, 43(4), 245-253 (2009)
  • [58] N Perminov, S Shakirov, Discriminants of symmetric polynomials, arXiv preprint arXiv:0910.5757 (2009)
  • [59] A Morozov, S Shakirov, On equivalence of two Hurwitz matrix models, Modern Physics Letters A, 24(33), 2659-2666 (2009)
  • [60] AS Anokhina, AY Morozov, SR Shakirov, Resultant as the determinant of a Koszul complex, Theoretical and Mathematical Physics, 160, 1203-1228 (2009)
  • [61] A Morozov, S Shakirov, Generation of matrix models by Ŵ-operators, Journal of High Energy Physics, 2009(04), 064 (2009)
  • [62] VV Dolotin, AY Morozov, SR Shakirov, Anstructure on simplicial complexes, Theoretical and Mathematical Physics, 156, 965-995 (2008)
  • [63] V Dolotin, A Morozov, S Shakirov, Higher nilpotent analogues of A∞-structure, Physics Letters B, 651(1), 71-73 (2007)
  • [64] S Shakirov, Higher discriminants of polynomials, arXiv preprint math/0609524 (2006)

Selected Publications:

Knot Homology from Refined Chern-Simons Theory (with M. Aganagic), 
Comm.Math.Phys. 333 (2015) 187-228
https://doi.org/10.1007/s00220-014-2197-4
http://arxiv.org/abs/1105.5117

Observables of Macdonald processes (with A. Borodin, I. Corwin, V. Gorin), 
Trans. Amer. Math. Soc. 368 (2016) 1517-1558
https://doi.org/10.1090/tran/6359
http://arxiv.org/abs/1306.0659

Genus Two Generalization of A1 spherical DAHA (with S.Arthamonov), 
Selecta Mathematica 25 (2019) 17
https://doi.org/10.1007/s00029-019-0447-1
http://arxiv.org/abs/1704.02947

An Elliptic Generalization of A1 Spherical DAHA at K=2 (with S.Arthamonov), 
International Mathematics Research Notices 19 (2024) 13046–13084
https://doi.org/10.1093/imrn/rnae192
https://arxiv.org/abs/2306.00215

Non-stationary difference equation for q-Virasoro conformal blocks, 
Letters in Mathematical Physics 114 (2024) 115
https://doi.org/10.1007/s11005-024-01856-2
https://arxiv.org/abs/2111.07939


 

更新时间: 2025-07-27 15:00:07


北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060