北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Integrable Systems Seminar Model of Josephson junction, dynamical systems on $T^2$, isomonodromic deformations and Painleve 3 equations
Model of Josephson junction, dynamical systems on $T^2$, isomonodromic deformations and Painleve 3 equations
组织者
尼古拉·莱舍提金 , 伊万·谢钦 , 安德烈·茨加诺夫
演讲者
Glutsyuk Alexey
时间
2024年04月16日 16:00 至 17:00
地点
Online
线上
Zoom 873 9209 0711 (BIMSA)
摘要
The tunneling effect predicted by B.Josephson (Nobel Prize, 1973) concerns the Josephson junction: two superconductors separated by a arrow dielectric. It states existence of a supercurrent through it and equations governing it. The overdamped Josephson junction is modeled by a family of differential equations on 2-torus depending on 3 parameters: $B$ (abscissa), $A$ (ordinate), $\omega$ (frequency). We study its rotation number $\rho(B, A; \omega)$ as a function of $(B, A)$ with fixed $\omega$. The phase-lock areas are those level sets $L_r:=\{\rho=r\}$ that have non-empty interiors. They exist only for integer rotation number values $r$: this is the rotation number quantization effect discovered by Buchstaber, Karpov and Tertychnyi. They are analogues of the famous Arnold tongues. Each $L_r$ is an infinite chain of domains going vertically to infinity and separated by points called constrictions (expect for those with $A=0$). See the phase-lock area portraits for $\omega=2$, 1, 0.3 at the presentation.
We show that: 1) all constrictions in $L_r$ lie in the vertical line $\{ B=\omega r\}$; 2) each constriction is positive, that is, some its punctured neighborhood in the vertical line lies in $\operatorname{Int}(L_r)$. These results, obtained in collaboration with Yulia Bibilo, confirm experiences of physicists (pictures from physical books of 1970-th) and two mathematical conjectures.
The proof uses an equivalent description of model by linear systems of differential equations on $\bar{\mathbb{C}}$ (found by Buchstaber, Karpov and Tertychnyi), their isomonodromic deformations described by Painleve 3 equations and methods of the theory of slow-fast systems. If the time allows we will discuss new results and open questions.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060