北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Optimization Seminar Neural Benders Decomposition for Mixed Integer Programming
Neural Benders Decomposition for Mixed Integer Programming
组织者
牛一帅
演讲者
Shahin Gelareh
时间
2024年01月30日 13:30 至 14:30
地点
A3-4-312
线上
Zoom 230 432 7880 (BIMSA)
摘要
We propose an imitation learning framework to enhance the Benders decomposition method. While we aim at generalizing the notion of Alternative Objective Function (AOF) for the subproblem proposed in recently via learning policies to separate cuts (separation subproblem) addressing another issue frequently observed in Benders subproblems —degeneracy. We propose two policies for this purpose each of which is learned on instances of a specific problem. In the first one, we replicate the a technique in selecting non-dominated dual solutions and learn from each iteration of training data. In the second policy, our objective is to determine a trajectory that expedites the attainment of the final subproblem’s dual solution. From among different problem on which this technique has been tested, we report computational experiments on two success cases of real-world problems to train and evaluate these two policies. Our results confirm that incorporating these learned policies significantly enhances the efficiency of the solution process.
演讲者介绍
Shahin Gelareh (Dr. habil.) is an Associate Professor in Operations Research and Logistics at the Université d'Artois in France and a member of the editorial board of Transportation Research Part E. Shahin's research focuses on combinatorial optimization problems arising in logistics (land, maritime, etc.) from the perspective of mathematical programming, algorithmics, and polyhedral. With the recent trend of success in ML-based techniques, Shahin also aims to leverage the power of ML to improve the computational performance of integer programming techniques. Shahin has previously worked at the National University of Singapore, Technical University of Denmark, Polytechnique de Lille, and Portsmouth Business School in the UK.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060