BIMSA >
Gravity, Geometry and Analysis
Geometrization of Quantum Information in Holography: Connected Wedge Theorem
Geometrization of Quantum Information in Holography: Connected Wedge Theorem
组织者
Gaoming Wang
,
赵博文
演讲者
时间
2025年11月13日 10:00 至 11:30
线上
Zoom 230 432 7880
(BIMSA)
摘要
In the context of asymptotic $2$-to-$2$ scattering process in AdS/CFT, the Connected Wedge Theorem identifies the existence of $O(1/G_N)$ mutual information between suitable boundary subregions, referred to as decision regions, as a necessary but not sufficient condition for bulk-only scattering processes, i.e., nonempty bulk scattering region $S_0$. Recently, Liu and Leutheusser proposed an enlarged bulk scattering region $S_E$ and conjectured that the non-emptiness of $S_E$ fully characterizes the existence of $O(1/G_N)$ mutual information between decision regions. Here, we provide a geometrical or general relativity proof for a slightly modified version of their conjecture.
演讲者介绍
赵博文博士于2020年12月获得耶鲁大学博士学位,随后加入北京雁栖湖应用数学研究院(BIMSA)在丘成桐教授指导下从事博士后研究,并于2025年起任助理教授。她的研究方向聚焦于广义相对论与数学物理领域,致力于探索时空几何、引力理论及相关数学结构的深层联系。