北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
河套数学与交叉学科研究院
BIMSA > Quantum Fields and Strings Group Seminar From closed to open strings: the tensionless route in Kalb–Ramond background and noncommutativity
From closed to open strings: the tensionless route in Kalb–Ramond background and noncommutativity
组织者
安东·普里比托克 , 侯赛因·亚瓦尔塔努
演讲者
Sarthak Duary
时间
2025年12月18日 15:00 至 16:30
地点
A7-302
线上
Zoom 388 528 9728 (BIMSA)
摘要
In this talk, I will present tensionless bosonic strings in a constant Kalb–Ramond background. I will show how the tensionless (Carrollian) limit induces a universal gluing between worldsheet oscillators, how this gluing generalizes in the presence of a constant (B)-field, and how the resulting mixed boundary conditions lead to a gluing matrix and a generalized induced vacuum that appears as a squeezed boundary state. This vacuum emerges continuously from the closed-string vacuum through a Bogoliubov transformation, giving an explicit realization of the closed-to-open string transition. I will also comment on toroidal compactifications, where the mechanism of worldsheet Bose–Einstein condensation remains unchanged.


I will then turn to the second goal of the work: understanding the noncommutative picture for tensionless strings. In the tensionless regime, the worldsheet metric becomes degenerate. Because of this, the standard Seiberg–Witten operator approach based on evaluating the open-string two-point function cannot be applied. Instead, I will use the symplectic formalism, which works directly with the boundary phase space. In this framework, the key object is the boundary symplectic two-form, obtained from the first-order part of the action. The structure of this two-form fixes the canonical brackets: its inverse determines the equal-time Poisson brackets of the boundary coordinates. Upon quantization, these Poisson brackets become commutators, and the coefficient of the delta function thus gives the noncommutative parameter. I will show that both tensile and tensionless strings can be treated uniformly in this symplectic language. In the tensile case, the metric and B-field together produce the boundary symplectic two-form whose inverse gives the Seiberg–Witten noncommutativity parameter. In the tensionless case, the B-field term gives the boundary symplectic form. Thus, tensionless strings realize a Seiberg–Witten type noncommutativity as an intrinsic feature.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060