BIMSA >
WKB analysis and hypergeometric differential equation
Exact WKB analysis of the Pearcey system
Exact WKB analysis of the Pearcey system
演讲者
时间
2025年11月29日 14:00 至 16:00
地点
A3-3-301
线上
Zoom 442 374 5045
(BIMSA)
摘要
In this talk we use the Pearcey integral as a model example to illustrate exact WKB analysis in a genuinely multivariable setting. we first derive the holonomic system of partial differential equations (the Pearcey system) that it satisfies, and explain how this system defines a rank–three D-module. Treating \eta as a large parameter, we then introduce logarithmic derivatives S and T, obtain a Hamilton–Jacobi–type nonlinear system, and construct WKB-type formal solutions. The leading terms of these solutions are governed by algebraic branches of a cubic equation, whose discriminant describes the turning point set, while the differences of the corresponding phase integrals define the Stokes set in the (x_1,x_2)-plane. Passing to the Borel transform in the WKB parameter, we show that the Borel transforms of the Pearcey WKB solutions satisfy a polynomial equation in the Borel variable, and hence are algebraic functions with finitely many branch points. This yields Borel summability and a clear resurgent structure, and makes it possible to interpret Stokes phenomena in terms of discontinuities across branch cuts in the Borel plane. Overall, the Pearcey system provides a concrete prototype for the synthesis of oscillatory integrals, holonomic PDEs, WKB theory, and Borel–Laplace analysis in several variables.
演讲者介绍
2013于四川大学数学学院基础数学专业获学士学位,2018年于北京大学北京国际数学研究中心获博士学位,2018-2021在清华大学丘成桐数学科学中心做博士后,2021年加入北京雁栖湖应用数学研究院任助理研究员。研究兴趣包括:可积系统,特别是GW理论、LG理论中出现的无穷维可积系统,兴趣在于理解其中的无穷个对称性的代数结构和相关计算。其他兴趣还包括:混合Hodge结构、等单值形变理论、KZ方程。