北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Research seminar in Discrete Mathematics Counting homomorphisms in antiferromagnetic graphs via Lorentzian polynomials
Counting homomorphisms in antiferromagnetic graphs via Lorentzian polynomials
组织者
马杰 , 本杰明·苏达科夫
演讲者
Joonkyung Lee
时间
2025年11月18日 17:05 至 18:15
地点
Online
线上
Zoom 787 662 9899 (BIMSA)
摘要
An edge-weighted graph $G$, possibly with loops, is said to be \emph{antiferromagnetic} if it has nonnegative weights and at most one positive eigenvalue, counting multiplicities. The number of graph homomorphisms from a graph $H$ to an antiferromagnetic graph $G$ generalises various important parameters in graph theory, including the number of independent sets and proper vertex-colourings, as well as their relaxations in statistical physics.

We obtain homomorphism inequalities for various graphs $H$ and antiferromagnetic graphs~$G$ of the form
\[
\lvert\operatorname{Hom}(H,G)|^2 \leq \lvert\operatorname{Hom}(H\times K_2,G)|,
\]
where $H\times K_2$ denotes the tensor product of $H$ and $K_2$. Firstly, we show that the inequality holds for any $H$ obtained by blowing up vertices of a bipartite graph into complete graphs and any antiferromagnetic $G$. In particular, one can take $H=K_{d+1}$, which already implies a new result for the Sah--Sawhney--Stoner--Zhao conjecture on the maximum number of $d$-regular graphs in antiferromagnetic graphs. Secondly, the inequality also holds for $G=K_q$ and those $H$ obtained by blowing up vertices of a bipartite graph into complete multipartite graphs, paths or even cycles.

Both results can be seen as the first progress towards Zhao's conjecture on $q$-colourings, which states that the inequality holds for any $H$ and $G=K_q$, after his own work. Our method leverages on the emerging theory of Lorentzian polynomials due to Br\"and\'en and Huh and log-concavity of the list colourings of bipartite graphs, which may be of independent interest.

Joint work with Jaeseong Oh and Jaehyeon Seo.
演讲者介绍
Joonkyung Lee is an Assistant Professor of Mathematics at Yonsei University, Seoul, South Korea. He studied mathematics at KAIST and received his PhD from the University of Oxford, under the supervision of David Conlon. Before joining Yonsei, he held postdoctoral positions at the University of Oxford, Universität Hamburg, and University College London, and later served as an Assistant Professor at Hanyang University. His research lies in extremal and probabilistic combinatorics, with a focus on graph homomorphism inequalities and related problems in graph theory
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060