北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Research seminar in Discrete Mathematics Nearly tight bounds for MaxCut in hypergraphs
Nearly tight bounds for MaxCut in hypergraphs
组织者
马杰 , 本杰明·苏达科夫
演讲者
Oliver Janzer
时间
2025年09月23日 17:05 至 18:15
地点
Online
线上
Zoom 787 662 9899 (BIMSA)
摘要
An $r$-cut of a $k$-uniform hypergraph is a partition of its vertex set into $r$ parts, and the size of the cut is the number of edges which have at least one vertex in each part. The study of the possible size of the largest $r$-cut in $k$-uniform hypergraphs was initiated by Erd\H{o}s and Kleitman in 1968. Conlon, Fox, Kwan and Sudakov proved that any $k$-uniform hypergraph with $m$ hyperedges has an $r$-cut whose size is $\Omega(m^{5/9})$ larger than the expected size of a random $r$-cut, provided that $k \geq 4$ or $r \geq 3$. They further conjectured that this can be improved to $\Omega(m^{2/3})$. Recently, R{\"a}ty and Tomon improved the bound $m^{5/9}$ to $m^{3/5-o(1)}$ when $r \in \{ k-1,k\}$. Using a novel approach, we prove the following approximate version of the Conlon--Fox--Kwan--Sudakov conjecture: for each $\varepsilon>0$, there is some $k_0=k_0(\varepsilon)$ such that for all $k>k_0$ and $2\leq r\leq k$, in every $k$-uniform hypergraph with $m$ edges there exists an $r$-cut exceeding the random one by $\Omega(m^{2/3-\varepsilon})$. Moreover, we show that (if $k\geq 4$ or $r\geq 3$) every $k$-uniform linear hypergraph has an $r$-cut exceeding the random one by $\Omega(m^{3/4})$, which is tight and proves a conjecture of R\"aty and Tomon.

Joint work with Julien Portier.
演讲者介绍
Oliver Janzer is a Junior Research Fellow at Trinity College, Cambridge, whose main research interests are Extremal, Probabilistic and Additive Combinatorics. He obtained his PhD in 2020 under the supervision of Timothy Gowers. Between 2020 and 2022 he held an ETH Zurich Postdoctoral Fellowship. In 2022 he won the British Combinatorial Committee’s PhD thesis prize.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060