北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Topology Seminar An Isometry Theorem for Persistent Homology of Circle-Valued Functions
An Isometry Theorem for Persistent Homology of Circle-Valued Functions
组织者
马修·伯菲特 , 李京艳 , 吴杰
演讲者
Mariam Pirashvili
时间
2025年10月21日 15:00 至 16:00
地点
A3-4-301
线上
Zoom 482 240 1589 (BIMSA)
摘要
Circle-valued functions provide a natural extension of real-valued functions, where instead of measuring values along a linear scale the values lie on a circle. This opens up new possibilities for analysing data in settings where the underlying structure is periodic or has a direction associated to it.

There has been significant work on circle-valued maps in the context of persistent homology. Zig-zag persistence generalises to circle-valued functions, leading to persistence modules which are representations of a zig-zag cyclic quiver of type $A_n$. This approach was first introduced in the work of Burghelea and Dey, who classified the resulting indecomposable represenatitons of the $A_n$ quiver as barcodes and Jordan blocks and proposed an algorithm for computing these. The stability of the numerical invariants of persistent homology with respect to the interleaving distance is the fundamental result in this area that gives this method its strong theoretical foundation. Over the years, this distance has been generalised to the zig-zag setting and to general poset representations, using tools from representation theory. Most notably, the involvement of the Auslander-Reiten translate in the definition of the interleaving distance has meant that the robust machinery of representation theory could be employed to derive algebraic stability theorems in more general settings.

Our main result is defining a stable interleaving distance on circle-valued persistence modules. Moreover, we propose a novel, computer-friendly way to encode the invariants of circle-valued functions via the so-called geometric model, a relatively new tool from representation theory. We also propose a matching distance based on the geometric model, and show that this matching metric coincides with the interleaving distance.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060