北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Optimization Seminar Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity
Ringmaster ASGD: The First Asynchronous SGD with Optimal Time Complexity
组织者
牛一帅
演讲者
Artavazd Maranjyan
时间
2025年03月13日 15:00 至 16:00
地点
A3-1-103
线上
Zoom 293 812 9202 (BIMSA)
摘要
Asynchronous Stochastic Gradient Descent (Asynchronous SGD) is a cornerstone method for parallelizing learning in distributed machine learning. However, its performance suffers under arbitrarily heterogeneous computation times across workers, leading to suboptimal time complexity and inefficiency as the number of workers scales. While several Asynchronous SGD variants have been proposed, recent findings by Tyurin & Richtárik (NeurIPS 2023) reveal that none achieve optimal time complexity, leaving a significant gap in the literature. In this paper, we propose Ringmaster ASGD, a novel Asynchronous SGD method designed to address these limitations and tame the inherent challenges of Asynchronous SGD. We establish, through rigorous theoretical analysis, that Ringmaster ASGD achieves optimal time complexity under arbitrarily heterogeneous and dynamically fluctuating worker computation times. This makes it the first Asynchronous SGD method to meet the theoretical lower bounds for time complexity in such scenarios.
演讲者介绍
Artavazd Maranjyan is a second-year Ph.D. student at KAUST, advised by Prof. Peter Richtárik. His research focuses on optimization for machine learning (ML) and federated learning (FL), contributing to the development of distributed and randomized optimization algorithms. His current work addresses system heterogeneity issues in distributed ML and FL, with an emphasis on asynchronous methods. Before starting his Ph.D., he earned an MSc and BSc from Yerevan State University. During his bachelor's studies, he co-authored several papers in Harmonic Analysis under the guidance of Prof. Martin Grigoryan.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060