北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Research seminar in Discrete Mathematics Improving graph's parameters through random perturbation
Improving graph's parameters through random perturbation
组织者
本杰明·苏达科夫
演讲者
Michael Krivelevich
时间
2023年02月21日 17:05 至 18:15
地点
Online
线上
Zoom 787 662 9899 (BIMSA)
摘要
Let $G$ be a graph on $n$ vertices, and assume that its minimum degree is at least $k$, or its independence number is at most $t$. What can be said then about various graph-theoretic parameters of $G$, such as connectivity, large minors and subdivisions, diameter, etc.? Trivial extremal examples (disjoint cliques, unbalanced complete bipartite graphs, random graphs and their disjoint unions) supply rather prosaic bounds for these questions. We show that the situation is bound to change dramatically if one adds relatively few random edges on top of $G$ (the so called randomly perturbed graph model). Here are representative results (in a somewhat approximate form): - Assuming $\delta(G)>=k$, and for $s < ck$, adding about $Cns*\log (n/k)/k$ random edges to $G$ results with high probability in an s-connected graph; - Assuming $\alpha(G)<= t$ and adding $cn$ random edges to $G$ typically produces a graph containing a minor of a graph of average degree of order $n/\sqrt{t}$. In this talk I will introduce and discuss the model of randomly perturbed graphs, and will present our results. A joint work with Elad Aigner-Horev and Dan Hefetz.
演讲者介绍
Michael Krivelevich is a Baumritter Professor of Combinatorics with the School of Mathematical Sciences of Tel Aviv University. He works in Extremal and Probabilistic Combinatorics and has coauthored two books and more than 230 papers. He gave an invited talk in the Combinatorics section at the International Congress of Mathematicians (ICM) in 2014, is a member of Academia Europaea and a fellow of the American Mathematical Society (AMS). Prof. Krivelevich is an Editor-in-Chief of Journal of Combinatorial Theory Series B (JCTB) and serves on the editorial boards of several other mathematical journals.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060