北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 控制理论和非线性滤波讨论班 Brownian and Poisson Bridges: Application to Nonlinear Filtering Problems and Error Estimates
Brownian and Poisson Bridges: Application to Nonlinear Filtering Problems and Error Estimates
组织者
丘成栋
演讲者
董文慧
时间
2024年12月28日 21:00 至 21:30
地点
Online
摘要
The nonlinear filtering (NLF) problems described by the stochastic systems with jump diffusive state/observation processes have been attracted more and more attentions. In this paper, we consider the NLF problem modelled by a diffusive state process with the mixed observations and the correlated noises. One of the observation processes is driven by the Brownian motion correlated with the state process, and the other one is an independent Poisson point process. The state's unnormalized density conditioned on the continuous observation history is described by the Zakai equation. However, in whatever algorithm, the unnormalized density conditioned only on the sub-filtration generated by the discretized observations can be implemented to approximate the solution of the Zakai equation. The main contribution of this paper is that we show under certain conditions the mean square error of this approximation is no more than the order O(√h), where h is the time step, by the technique of Brownian and Poisson bridges. To verify this theoretical convergence rate, we extend the on- and off-line algorithm, originally proposed for the classical NLF problems, to those with the mixed observations and the correlated noises. This algorithm is numerically experimented in the modified cubic sensor problem, which can achieve the error of the order O(√h). Moreover, we compare this algorithm with the particle filter to illustrate the superiority of the on- and off-line algorithm in both accuracy and efficiency.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060