北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 控制理论和非线性滤波讨论班 Non-Gaussian Bayesian Filtering by Density Parametrization Using Power Moments
Non-Gaussian Bayesian Filtering by Density Parametrization Using Power Moments
组织者
丘成栋
演讲者
康家熠
时间
2023年07月10日 15:00 至 15:30
地点
数学系理科楼A-203
摘要
I will report a paper on Non-Gaussian Bayesian filtering. Non-Gaussian Bayesian filtering is a core problem in stochastic filtering. The difficulty of the problem lies in parameterizing the state estimates. However the existing methods are not able to treat it well. We propose to use power moments to obtain a parameterization. Unlike the existing parametric estimation methods, our proposed algorithm does not require prior knowledge about the state to be estimated, e.g. the number of modes and the feasible classes of function. Moreover, the proposed algorithm is not required to store massive parameters during filtering as the existing nonparametric Bayesian filters, e.g. the particle filter. The parameters of the proposed parametrization can also be determined by a convex optimization scheme with moments constraints, to which the solution is proved to exist and be unique. A necessary and sufficient condition for all the power moments of the density estimate to exist and be finite is provided. The errors of power moments are analyzed for the density estimate being either light-tailed or heavy-tailed. Error upper bounds of the density estimate for the one-step prediction are proposed. Simulation results on different types of density functions of the state are given, including the heavy-tailed densities, to validate the proposed algorithm.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060