Yang-Baxter gates and integrable circuit
演讲者
Kun Zhang
时间
2024年12月10日 16:00 至 17:00
地点
A6-101
线上
Zoom 873 9209 0711
(BIMSA)
摘要
Brickwork circuits composed of the Yang-Baxter gates are integrable. It becomes an important tool to study the quantum many-body system out of equilibrium. I will talk about the properties of Yang-Baxter gates via the quantum information theory. We find that only certain two-qubit gates can be converted to the Yang-Baxter gates via the single-qubit gate operations. I will also talk about some possible extensions of the integrable circuits. Numerical analysis suggests that there is a broad class of circuits that are integrable, which are beyond the standard algebraic Bethe ansatz method.
Reference: [1] K. Zhang, K. Hao, K. Yu, V. Korepin, and W.-L. Yang, Geometric representations of braid and Yang-Baxter gates, J. Phys. A: Math. Theor. 57 445303, arXiv:2406.08320 (2024).
[2] K. Zhang, K. Yu, K. Hao, and V. Korepin, Optimal realization of Yang-Baxter gate on quantum computers, Adv. Quantum Technol. 2024, 2300345, arXiv:2307.16781 (2024).
Reference: [1] K. Zhang, K. Hao, K. Yu, V. Korepin, and W.-L. Yang, Geometric representations of braid and Yang-Baxter gates, J. Phys. A: Math. Theor. 57 445303, arXiv:2406.08320 (2024).
[2] K. Zhang, K. Yu, K. Hao, and V. Korepin, Optimal realization of Yang-Baxter gate on quantum computers, Adv. Quantum Technol. 2024, 2300345, arXiv:2307.16781 (2024).