北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Mathematical Biology and Deep Learning Essential dynamics in chaotic attractors
Essential dynamics in chaotic attractors
组织者
Hamid Mofidi , 杨武岳
演讲者
Eran Igra
时间
2024年12月10日 09:00 至 10:30
地点
Online
线上
Zoom 518 868 7656 (BIMSA)
摘要
Assume we have a smooth vector field of $S^3$ whose fixed points are all connected by unstable heteroclinic orbits. It is well-known from numerical studies that such heteroclinic knots can trap between them chaotic attractors - which raises the following question: can we prove analytically these chaotic attractors exist? One approach to answer this question is to prove the existence of chaotic dynamics by adding some extra assumptions - like, say, some form of a Hyperbolicity condition. This begs another question - since we usually cannot prove the original flow to be hyperbolic, just how much the results we prove under hyperbolicity assumptions actually hold for the original flow?

In this talk we give a partial answer to this question. Inspired by the Thurston-Nielsen Classification Theorem we prove that in certain heteroclinic scenarios one can define a class of periodic orbits for the flow which persist (without changing their knot type) under a certain class of smooth homotopies of the vector field which keep the heteroclinic condition fixed. This has the following meaning - assume we can smoothly deform the dynamics trapped between the heteroclinic knot into a hyperbolic (or more precisely, singular hyperbolic) dynamical system, then all the periodic orbits for the singular hyperbolic system are also generated by the original flow. Following that will show how our results can be applied to study the dynamics of the Lorenz and Rössler attractors, and time permitting, conjecture how they can be generalized to derive a forcing theory for three-dimensional flows.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060