北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Computational Math Seminar Lax pairs informed neural networks solving integrable systems
Lax pairs informed neural networks solving integrable systems
组织者
李震 , 梁鑫 , 马志婷 , Hamid Mofidi , 王丽 , 熊繁升 , 杨朔 , 杨武岳
演讲者
Juncai Pu (IAPCM)
时间
2024年11月04日 15:00 至 16:00
地点
A3-4-312
线上
Zoom 928 682 9093 (BIMSA)
摘要
Lax pairs are one of the most important features of integrable system. In this work, we propose the Lax pairs informed neural networks (LPNNs) tailored for the integrable systems with Lax pairs by designing novel network architectures and loss functions, comprising LPNN-v1 and LPNN-v2. The most noteworthy advantage of LPNN-v1 is that it can transform the solving of complex integrable systems into the solving of relatively simple Lax pairs, and it not only efficiently solves data-driven localized wave solutions, but also obtains spectral parameter and corresponding spectral function in spectral problems of the integrable systems. On the basis of LPNN-v1, we additionally incorporate the compatibility condition/zero curvature equation of Lax pairs in LPNN-v2, its major advantage is the ability to solve and explore high-accuracy data-driven localized wave solutions and associated spectral problems for integrable systems with Lax pairs. The numerical experiments focus on studying abundant localized wave solutions for very important and representative integrable systems with Lax pairs, including the soliton solution of the Korteweg-de Vries (KdV) equation and modified KdV equation, rogue wave solution of the nonlinear Schrödinger equation, kink solution of the sine-Gordon equation, non-smooth peakon solution of the Camassa-Holm equation and pulse solution of the short pulse equation, as well as the line-soliton solution of Kadomtsev-Petviashvili equation and lump solution of high-dimensional KdV equation. The innovation of this work lies in the pioneering integration of Lax pairs informed of integrable systems into deep neural networks, thereby presenting a fresh methodology and pathway for investigating data-driven localized wave solutions and spectral problems.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060