北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA-YMSC Tsinghua Number Theory Seminar Tate Classes and Endoscopy for GSp4
Tate Classes and Endoscopy for GSp4
组织者
刁晗生 , 杜衡 , 胡悦科 , Bin Xu , Yihang Zhu
演讲者
Naomi Sweeting
时间
2024年11月25日 10:00 至 11:00
地点
Online
线上
Zoom 455 260 1552 (YMSC)
摘要
Weissauer proved using the theory of endoscopy that the Galois representations associated to classical modular forms of weight two appear in the middle cohomology of both a modular curve and a Siegel modular threefold. Correspondingly, there are large families of Tate classes on the product of these two Shimura varieties, and it is natural to ask whether one can construct algebraic cycles giving rise to these Tate classes. It turns out that a natural algebraic cycle generates some, but not all, of the Tate classes: to be precise, it generates exactly the Tate classes which are associated to generic members of the endoscopic L-packets on GSp4. In the non-generic case, one can at least show that all the Tate classes arise from Hodge cycles. I will explain these results and their proofs, which rely on the theta correspondence.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060