北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Topology Seminar Double homology of moment-angle complexes and bigraded persistence barcodes
Double homology of moment-angle complexes and bigraded persistence barcodes
组织者
马修·伯菲特 , Tyrone Cutler , 李京艳 , 吴杰 , 周嘉伟
演讲者
Taras Panov
时间
2023年11月13日 14:30 至 15:30
地点
A3-4-101
线上
Zoom 230 432 7880 (BIMSA)
摘要
Given a finite pseudo-metric space $(X,d_X)$, the Vietoris--Rips filtration is a sequence $\{R(X,t)\}_{t\ge0}$ of filtered flag simplicial complexes associated with~$X$. The simplicial homology of $R(X,t)$ is used to define the most basic persistence modules in data science, the persistent homology of~$X$. In toric topology, a finer homological invariant of a simplicial complex $K$ is considered, the bigraded homology of the moment-angle complex $\mathcal Z_K$ associated with~$K$. The moment-angle complex $\mathcal Z_K$ is a toric space patched from products of discs and circles parametrised by simplices in a simplicial complex~$K$. It has a bigraded cell decomposition and the corresponding bigraded homology groups $H_{-i,2j}(\mathcal Z_K)$ contain the simplicial homology groups $H_k(K)$ as a direct summand. Algebraically, the bigraded homology modules $H_{-i,2j}(\mathcal Z_K)$ are the bigraded components of the $\text{Tor}$-modules of the Stanley--Reisner ring $\mathbf k[K]$ and can be expressed via the Hochster decomposition as the sum of the reduced simplicial homology groups of all full subcomplexes $K_I$ of~$K$. The bigraded homology of the moment-angle complexes $\mathcal Z_{R(X,t)}$ associated with the Vietoris--Rips filtration $\{R(X,t)\}_{t\ge0}$ can be used to define bigraded persistent homology modules and bigraded barcodes of a point cloud (data set)~$X$. Simple examples show that bigraded persistent homology can distinguish between points clouds that are indistinguishable by the ordinary persistent homology. Double homology $\text{\it HH}_*(\mathcal Z_K)$ is the homology of the chain complex $\text{\it CH}_*(\mathcal Z_K)=(H_*(\mathcal Z_K),\partial')$ obtained by endowing the bigraded homology of~$\mathcal Z_K$ with the second differential~$\partial'$. The bigraded double homology modules are smaller than the bigraded homology modules, and therefore might be more computationally accessible. More importantly, persistent homology modules defined from the bigraded double homology of the Vietoris--Rips filtration have the stability property, which roughly says that the bigraded barcode is robust to changes in the input data. This is a joint work with Anthony Bahri, Ivan Limonchenko, Jongbaek Song and Donald Stanley.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060