北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Topology Seminar Bigraded path homology and the magnitude-path spectral sequence
Bigraded path homology and the magnitude-path spectral sequence
组织者
马修·伯菲特 , 李京艳 , 吴杰 , 周嘉伟
演讲者
Emily Roff
时间
2024年04月03日 14:30 至 15:30
地点
A3-4-101
线上
Zoom 559 700 6085 (BIMSA)
摘要
The past decade has seen large literatures develop around two novel invariants of directed graphs: magnitude homology (due to Leinster, Hepworth and Willerton) and the path homology of GLMY theory. Though their origins are quite separate, Asao proved in 2022 that in fact these homology theories are intimately related. To every directed graph one can associate a certain spectral sequence - the magnitude-path spectral sequence, or MPSS - whose page $E^1$ is exactly magnitude homology, while path homology lies along a single axis of page $E^2$.

This talk has two subjects: the MPSS as a whole, and its page $E^2$, which we call the bigraded path homology of a directed graph. I will explain the construction of the sequence and argue that each one of its pages deserves to be regarded as a homology theory for digraphs, satisfying a Künneth formula and an excision theorem, and with a homotopy-invariance property that grows stronger as we turn the pages of the sequence. The second half of the talk will focus on bigraded path homology, which shares the important homological properties of ordinary path homology but is a strictly finer invariant - capable of distinguishing, for example, the directed n-cycles for all $n > 2$. We will close with some speculations on the implications of all this for the formal homotopy theory of the category of directed graphs.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060