北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Schubert calculus and symmetric polynomials
Schubert calculus and symmetric polynomials
The main goal of the course is to look on some classical problems in the symmetric polynomials, algebraic combinatorics and algebraic topology from the point of view of the hidden Yang-Baxter structures, which origins from mathematical physics. We will start from the refreshment of the classical items in combinatorics and algebraic geometry. The second part of the course is devoted to application of the hidden Yang-Baxter structure in the classical problems of Schubert and Grothendieck calculus. The last part will contain the modern generalizations of these ideas, which I am developing now.
讲师
阿纳托利·基里洛夫
日期
2023年09月19日 至 12月19日
位置
Weekday Time Venue Online ID Password
周二,周五 13:30 - 15:15 A3-1a-205 - - -
修课要求
The knowledge of linear algebra and basic algebraic structures (groups, rings, polynomial rings) is required. The familiarity with the basic facts about cohomologies and K-theory will be quite useful in the second part of the course.
课程大纲
Part 1. Preliminaries.

1. Symmetric group, definition and basic properties
2. Ring of polynomials and action of symmetric group on it; ring of symmetric functions;
3. Basic symmetric functions
4. Elementary, complete and power sums;
5. Schur functions, definition and basic properties;
6. Jacobi-Trudy identities, Cauchy identities;
7. Diagrams, tableaux and basic properties; Euler and Euler-Bethe identities; diagrams and tableaux;
8. Tableaux formula for Schur polynomials; Kostka polynomials
9. Flag varieties. Definition and basic properties: Schubert cells, cohomology ring, Schubert classes and Schubert polynomials.
10. Divided differences and Lascaux-Schützenberger Schubert polynomials.

Part 2. Yang-Baxter relations and Schubert and Grothendieck polynomials.

11. Nil-Coxeter, Id-Coxeter, and Plactic algebras. Definitions and basic properties.
12. Yang-Baxter relations, symmetric polynomials and non-commutative Cauchy kernel.
13. Schubert expression, divided differences and Schubert polynomials.
14. Id-Coxeter algebra and Grothendieck polynomials.
15. Some combinatorial rites of Schubert and Grothendieck polynomials: compatible sequences, reduced decompositions, principal specialization formulas for Schubert and Grothendieck polynomials.
16. Plactic relations, monoid and algebras. Plactic Cauchy kernel, plactic double and Stanley polynomials. ASM and TSPP matrices.

Part 3. Non-commutative approach to (small) quantum Schubert and Grothendieck polynomials and Fomin-Kirillov algebras.

17. Graphs, quadratic Algebras and Dunkl elements. Definitions and basic properties.
18. Fomin-Kirillov algebras. Definition and basic properties of FK algebras for complete digraphs.
19. Relations between Dunkl element and a commutative subalgebra generated by Dunkl elements.
20. Nil-Fomin-Kirillov algebra and cohomology ring of type A flag varieties.
21. FK algebras and small quantum cohomology of type A flag varieties.
22. Multiplicative Dunkl elements and K-theory of type A flag varieties.
23. The case of Multipartite graphs and parabolic flag varieties ( e.g. Grassmannians,…).
24. Elliptic representations of FK algebras and commutative subalgebras generated by Dunkl elements.
参考资料
[1] I.G. Macdonald, Symmetric functions and Hall polynomials (1995)
[2] I.G. Macdonald, Notes on Schubert polynomials (1991)
[3] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci (2001)
[4] R.P. Stanley, Enumerative combinatorics, vol.2 (2001)
[5] S.I. Fomin, A.N. Kirillov, Quadratic algebras, Dunkl Elements and Schubert Calculus (1999)
[6] S. Fomin, A.N. Kirillov, Yang-Baxter equation, symmetric functions and Grothendieck polynomials (hep-th/9306005)
[7] A.N. Kirillov, On some quadratic algebras 1+1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and Reduced Polynomials (arXiv:1501.07337)
视频公开
公开
笔记公开
公开
讲师介绍
Anatol Kirillov的研究领域是可积系统、表示论、特殊函数、代数组合学和代数几何。他在过去的20年里,在日本不同的大学担任教授。2022年,他加入BIMSA任研究员。
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060