北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Probability and Statistical physics \(ICBS\)
Probability and Statistical physics
The first two lectures are described below. We can continue with further lectures and also working on research questions with small groups, according to the interest of the students.
Asking questions during lectures is strongly encouraged!!!

Lecture 1: The hunter, the rabbit and Kakeya sets
Lecturer: Yuval Peres
Abstract: A planar set that contains a unit segment in every direction is called a Kakeya set. These sets have been studied intensively in measure theory and harmonic analysis since Besicovich (1919); we find a new connection to combinatorics and game theory. A hunter and a rabbit move on an n-vertex cycle without seeing each other until they meet. At each step, the hunter moves to a neighboring vertex or stays in place, while the rabbit is free to jump to any node. Thus they are engaged in a zero sum game, where the payoff is the capture time. We show that every rabbit strategy yields a Kakeya set; the optimal rabbit strategy is based on a Cauchy random walk, and it yields a Kakeya set K consisting of 4n triangles, that has minimal area among such Kakeya sets. I’ll conclude with an open problem: is the capture time of a weak rabbit (that can only jump to distance 1) on a general n-vertex graph, linear in n ?

Lecture 2: Percolation and phase transitions
Lecturer: Senya Shlosman
Abstract: We are all familiar with some phase transitions in the real world, such as the boiling of water, when increasing the temperature continuously yields a qualitative change. The first mathematical models of phase transitions emerged in the 20th century, with some recent spectacular progress that has led to three Fields medals in this century. We will present the fundamentals of the topic, the remarkable new insights obtained in two dimensions, leading up to the central open question of continuity of the percolation probability in three dimensions.
讲师
尤瓦尔•佩雷斯 , 谢尼亚·什洛斯曼
日期
2022年12月10日 至 17日
网站
https://www.bimsa.cn/newsinfo/785905.html
听众
Undergraduate , Graduate
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Yuval Peres 1990年于耶路撒冷希伯来大学博士毕业,并先后于斯坦福大学和耶鲁大学任职博士后。此后,他在美国加州大学伯克利分校和耶路撒冷希伯来大学担任数学和统计学教授,并任微软公司首席研究员。Peres在概率论的大部分领域总共发表过超过350篇论文,包括随机游走,布朗运动,渗流和随机图。与他人著有多本专题专著:《概率与分析中的分形》,《布朗运动》,《高斯解析函数的零点与行列式点过程》,《马尔可夫链与混合时间》,《树图与网络中的概率论》,《博弈论》,并被美国数学会和剑桥大学出版社出版。专著涉及马可夫链、概率图、博弈论和布朗运动等方向,具体信息可以在以下网址查找:https://www.yuval-peres-books.com/ . 他的报告可在以下网址查找:https://yuval-peres-presentations.com/。 Peres是Rollo Davidson奖和Loeve奖得主,是2002年北京国际数学家大会、2008年欧洲数学家年会、2017年美国数学家年会邀请报告人,并于2016年当选美国科学院院士。他指导过21名博士,包括Elchanan Mossel (美国麻省理工大学教授, 美国数学家学会会士),  丁剑 (北京大学, 国际华人数学家大会金奖、Rollo Davidson奖得主),  以及Balint Virag和Gabor Pete (Rollo Davidson奖得主).
Senya Shlosman obtained his PhD in 1978, from the St.-Petersburg branch of Steklov institute. His adviser was Roland Dobrushin. He obtained his second PhD (habilitation) in 1989, from the Ukrainian Institute of Mathematics. From 1991 he was Professor of the Dept. of Math., UC Irvine. He moved to France in 1996, getting the position of Directeur de Recherche in CPT, CNRS, Luminy, Marseille. Currently he is a leading scientific researcher in the Institute for Information Transmission Problems of the Academy of Science, Moscow, and Professor of the Center for Advance Studies in Skolkovo Inst. of Technology, Moscow.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060