北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Potential theory on $R^d$ and on graphs
Potential theory on $R^d$ and on graphs
The aim of this course is to present a number of ideas and notions in Potential Theory from several points of view.
First we plan to make a brief introduction to basics, and then discuss some central objects in the area, in the discrete setting and in continuum, switching sometimes between Analytic and Probabilistic language. Such a plan -- if realized in its fullness -- would obviously require several lecture courses, so we will mostly consider the Laplace operator (i.e. Riesz potentials and harmonic functions) and concentrate on several core notions, amongst them being energy and equilibrium distributions (including Frostman's theorems), capacity, Dirichlet problem and regular points, harmonic measure. We will work in the continuous setting in $R^d$, while the discrete models (usually on trees and lattices) will be used as a source of examples, and also to highlight the probabilistic connections. We will mention the differences between the complex plane and R^d, but we will evade the specifics of complex analysis wherever possible.
Professor Lars Aake Andersson
讲师
Pavel Mozolyako
日期
2025年09月17日 至 11月14日
位置
Weekday Time Venue Online ID Password
周三,周五 13:30 - 15:05 Shuangqing-C546 ZOOM 12 815 762 8413 BIMSA
修课要求
The listener should be acquainted with basics of real and complex analysis (including measure theory), functional analysis (in particular distributions) and probability, some knowledge of Markov chains, harmonic and subharmonic functions is also recommended. We aim to present the core proofs in a self-contained way, for the rest the references will be provided.
课程大纲
1. Harmonic and subharmonic functions: basic notions, Harnack's inequality, maximum principle, Poisson representation formula, modification and gluing theorems, integrability, smoothing, weak identity, harmonicity and subharmonicity on graphs;

2. Potentials and equilibrium: general definition, Newton, Riesz and Bessel potentials in $R^d$, continuity, maximum principle, energy, polar sets, equilibrium measures, Frostman's theorem, generalized Laplacian, Riesz decomposition theorem;

3. Geometric properties: thinness, Hausdorff content, infinity sets.

4. Capacities: definitions, basic properties, dual definition, capacity estimates, capacity and dimension, some examples.

5. Dirichlet problem for the Laplace operator: formulation, Perron's method, regular boundary points and barriers, criteria for regularity, harmonic measure, equilibrium and harmoinc measures, Green functions, harmonic majorants.
参考资料
· David Adams, Lars Inge Hedberg. Function Spaces and Potential Theory. Springer, 1999.
· Thomas Ransford. Potential Theory in the Complex Plane. Cambridge, 1995
· Lester L. Helms. Potential Theory. Springer, 2009
· W.K. Hayman, P.B. Kennedy. Subharmonic functions Vol. 1. London Mathematical Society, 1976
· S. Axler, P. Bourdon, W. Ramey. Harmonic function theory. Springer, 2001
· E.B. Dynkin, A.A. Yushkevich. Markov Processes: Theorems and Problems. New York, 1969
· Russel Lyons, Yuval Peres. Probability on Trees and Networks. Cambridge, 2016
· Richard E. Bass. Probabilistic Techniques in Analysis. Springer, 1995
· Kai Lai Chung. Green, Brown and Probability & Brownian Motion on the Line. World Scientific, 2002
· Joseph A. Doob. Classical Potential Theory and Its Probabilistic Counterpart. Springer, 2001
视频公开
公开
笔记公开
公开
讲师介绍
Pavel Mozolyako is an associate professor at St. Petersburg State University. He leads PhD program in mathematics at the department of Mathematics and Computer Science. He got his PhD degree in 2009, at St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences. He was a postdoc at Norwegian University of Science and Technology, University of Bologna, and a visiting professor at Michigan State University. His research considers mostly boundary behaviour of harmonic functions and discrete models in potential theory.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060