Derived functors of non-additive functors
In this course we are studying various topics in the simplicial homotopy theory. This semester we will discuss the theory of derived functors of non-additive functors. After a brief reminder of a classical theory of derived functors, we will follow the seminal paper of Dold and Puppe on the topic. Relation to homology of symmetric powers and Eilenberg-Maclane spaces will be discussed as well. If time permits, we will also look at the general theory of derived functors in an abstract homotopy-theoretical context.
讲师
Fedor Pavutnitskiy
日期
2023年09月27日 至 12月20日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周三 | 10:40 - 15:05 | A3-3-201 | ZOOM 09 | 230 432 7880 | BIMSA |
修课要求
category theory, homological algebra, homotopy theory
课程大纲
1. Derived functors in homological algebra
2. Derived functors in simplicial homotopy theory
3. Dold-Kan correspondence, generalized Eilenberg-Zilber theorem
4. Applications of suspension homomorphism and bar construction
2. Derived functors in simplicial homotopy theory
3. Dold-Kan correspondence, generalized Eilenberg-Zilber theorem
4. Applications of suspension homomorphism and bar construction
参考资料
Dold, A., & Puppe, D. (1961). Homologie nicht-additiver funktoren. anwendungen. In Annales de l'institut Fourier (Vol. 11, pp. 201-312).
听众
Graduate
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Fedor Pavutnitskiy主要研究单纯同伦论及其在path homology中的应用,以及与群和李代数相关的同调代数,同时对机器学习在现代数学中的应用感兴趣。