数学与生物讨论班
人工智能(AI)和现代生物学是当今世界最重要的科学领域之一,它们可以带来技术革命,并从根本上改变社会格局。二十一世纪生物科学的主要趋势是从现象学、描述性科学向定量和预测性科学的转变。构建生物学的“fundamental laws”已经成为本世纪数学发展的中心问题之一。借助人工智能和数学工具,生物科学已经获得了巨大进步和发展。但更多具有挑战性的问题还亟需更好的数学方法和人工智能工具。近年来,来自于代数拓扑,计算拓扑,微分几何等数学领域的方法正逐渐被应用于数据分析,包括备受关注的拓扑数据分析(TDA),在人工智能和分子生物学的各个方面已经展示出巨大的应用潜力。
本讨论班将会以“生物为主线”,分享交流数学方法的用武之地,以报告的形式进行,每次会有一位报告人介绍数学理论或者数学理论的应用。
本讨论班将会以“生物为主线”,分享交流数学方法的用武之地,以报告的形式进行,每次会有一位报告人介绍数学理论或者数学理论的应用。
日期
2022年09月23日 至 12月16日
历史讲座
演讲者:
张蒙蒙
时间: 2022年12月04日 10:30 至 11:30
演讲者:
Xiaoxian Tang
时间: 2022年11月18日 10:30 至 11:30
演讲者:
童浥尘
时间: 2022年10月21日 10:30 至 11:30
演讲者:
Daisuke Kishimoto
时间: 2022年09月23日 10:30 至 11:30
网站
参考资料
[1] Grigor'yan, A., Lin, Y., Muranov, Y., & Yau, S. T. (2012). Homologies of path complexes and digraphs. arXiv preprint arXiv:1207.2834.
[2] Chowdhury, S., & Mémoli, F. (2018). Persistent path homology of directed networks. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1152-1169). Society for Industrial and Applied Mathematics.
[3] Sun, Z., Pei, S., He, R. L., & Yau, S. S. T. (2020). A novel numerical representation for proteins: three-dimensional chaos game representation and its extended natural vector. Computational and structural biotechnology journal, 18, 1904-1913.
[4] Dong, R., Pei, S., Yin, C., He, R. L., & Yau, S. S. T. (2020). Analysis of the hosts and transmission paths of SARS-CoV-2 in the COVID-19 outbreak. Genes, 11(6), 637.
[5] Bressan, S., Li, J., Ren, S., & Wu, J. (2019). The embedded homology of hypergraphs and applications. Asian Journal of Mathematics, 23(3), 479-500.
[6] Liu, X., Wang, X., Wu, J., & Xia, K. (2021). Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design. Briefings in Bioinformatics, 22(5), bbaa411.
[7] Kishimoto, D., & Takeda, M. (2021). Spaces of commuting elements in the classical groups. Advances in Mathematics, 386, 107809.
[8] Farber, M., Kishimoto, D., & Stanley, D. (2020). Generating functions and topological complexity. Topology and its Applications, 278, 107235.
[9] Luo, X., & Shvydkoy, R. (2017). Addendum: 2D homogeneous solutions to the Euler equation. Communications in Partial Differential Equations, 42(3), 491-493.
[10] Luo, X., & Yau, S. S. T. (2018). The suboptimal method via probabilists’ Hermite polynomials to solve nonlinear filtering problems. Automatica, 94, 9-17.
[11] Gao, Y., Li, F., Liang, L., & Lei, F. (2021). Weakly reducible H-splittings of 3-manifolds. Journal of Knot Theory and Its Ramifications, 30(10), 2140004.
[12] Yue, Y., Wu, J., & Lei, F. (2019). The evolution of non-degenerate and degenerate rendezvous tasks. Topology and its Applications, 264, 187-200.
[2] Chowdhury, S., & Mémoli, F. (2018). Persistent path homology of directed networks. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1152-1169). Society for Industrial and Applied Mathematics.
[3] Sun, Z., Pei, S., He, R. L., & Yau, S. S. T. (2020). A novel numerical representation for proteins: three-dimensional chaos game representation and its extended natural vector. Computational and structural biotechnology journal, 18, 1904-1913.
[4] Dong, R., Pei, S., Yin, C., He, R. L., & Yau, S. S. T. (2020). Analysis of the hosts and transmission paths of SARS-CoV-2 in the COVID-19 outbreak. Genes, 11(6), 637.
[5] Bressan, S., Li, J., Ren, S., & Wu, J. (2019). The embedded homology of hypergraphs and applications. Asian Journal of Mathematics, 23(3), 479-500.
[6] Liu, X., Wang, X., Wu, J., & Xia, K. (2021). Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design. Briefings in Bioinformatics, 22(5), bbaa411.
[7] Kishimoto, D., & Takeda, M. (2021). Spaces of commuting elements in the classical groups. Advances in Mathematics, 386, 107809.
[8] Farber, M., Kishimoto, D., & Stanley, D. (2020). Generating functions and topological complexity. Topology and its Applications, 278, 107235.
[9] Luo, X., & Shvydkoy, R. (2017). Addendum: 2D homogeneous solutions to the Euler equation. Communications in Partial Differential Equations, 42(3), 491-493.
[10] Luo, X., & Yau, S. S. T. (2018). The suboptimal method via probabilists’ Hermite polynomials to solve nonlinear filtering problems. Automatica, 94, 9-17.
[11] Gao, Y., Li, F., Liang, L., & Lei, F. (2021). Weakly reducible H-splittings of 3-manifolds. Journal of Knot Theory and Its Ramifications, 30(10), 2140004.
[12] Yue, Y., Wu, J., & Lei, F. (2019). The evolution of non-degenerate and degenerate rendezvous tasks. Topology and its Applications, 264, 187-200.