北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Finite-size effects in 2D QFT \(ICBS\)
Finite-size effects in 2D QFT
The aim of this course is to spell out the methods for the evaluation of the finite volume/temperature effects in two-dimensional relativistic quantum field theories (CFT). I will focus on three CFT with one local degree of freedom: the free massive boson, the Ising Field Theory and the sinh-Gordon model. The last one is an interacting CFT with factorised scattering. The finite-volume dynamics of such theories is solved by the Thermodynamical Bethe ansatz (TBA). Here I will present a refined version of the TBA known as exact cluster expansion.

Keywords: Partition function, Path integral, Modular invariance, Casimir energy, Factorised scattering, Gaudin norm, Thermodynamical Bethe Ansatz.
讲师
Ivan Kostov
日期
2023年09月28日 至 11月16日
位置
Weekday Time Venue Online ID Password
周三,周四 09:50 - 11:25 A3-1a-205 ZOOM 06 537 192 5549 BIMSA
修课要求
Basic knowledge of Quantum Mechanics, Quantum Field Theory and Statistical Mechanics is needed, as well as reasonable knowledge of lineal algebra and complex analysis.
课程大纲
I. Quantum field Theory (QFT) of a free relativistic massive boson with doubly periodic boundary conditions.
Three equivalent representations of the partition sum: 1) as a functional integral over the bosonic field, 2) as a thermal trace of the evolution operator, 3) as a sum over relativistic particles winding around the two cycles of the periodic rectangle. Computation of the free energy in the three representations. Zero-point energy, modular invariance, Casimir energy. Massless limit.

II. Ising field theory on infinite and doubly periodic lattices.
Vdovichenko map onto a gas of loops. Equivalence with the QFT of a free Majorana fermion. Splitting the partition function into four computable blocks. Modular invariance, Casimir energy, Massless limit.

III. Interacting QFTs with factorised scattering.
Properties of the simplest two-particle scattering matrix and general solution in case of diagonal scattering. Scattering matrix for the Sinh-Gordon model. Bethe ansatz and Bethe-Yang equations.

IV. Evaluation of the partition function in the limit of one large and one small cycle
1. Evaluation of the thermal trace by a resolution of the identity. Gaudin measure for the integral over multi-particle states. Graph expansion of the Gaudin determinant. Kirchhoff’s Matrix-Tree theorem. Exact cluster expansion and derivation of the TBA equation.
2. Reformulation of the QFT as a gas of loops winding the two periodic directions and phase factors associated with their intersections. Evaluation of the sum over winding loops by a Hubbard-Stratonovich transformation. TBA equation as a Schwinger-Dyson equation for the Hubbard-Stratonovich fields.

This two-month course will cover about half of the material. The other half will be covered by another two-month course during the next year.
听众
Graduate , 博士后
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Ivan Kostov obtained his PhD in 1982 from the Moscow State University, with scientific advisers Vladimir Feinberg and Alexander Migdal. Then he worked in the group of Ivan Todorov at the INRNE Sofia, and since 1990 as a CNRS researcher at the IPhT, CEA-Saclay, France. Currently he is emeritus DR CNRS at IPhT and a visiting professor at UFES, Vitoria, Brazil.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060