Isomonodromic deformation and tau function II
Last semester, we talk about the basic theory of isomonodromic deformations of Fuchsian systems. In this semester, we will continue this topic and present the Isomonodromy/CFT correspondence. In the first part, we will discuss the rank 2 case, the Painleve/CFT correpondence, where the generic Painleve VI tau function can be interpreted as 4-point correlator of primary fields of arbitrary dimensions in 2d CFT with central charge c=1. On the other hand, the AGT combinatorial representation of conformal blocks helps us to obtain completely explicit expansions of tau(t) near the singular points. In particular, we will discuss examples of conformal blocks arising from Riccati, Picard, Chazy and algebraic soultions of Painleve VI. In the second part, we will discuss the higher rank case: the correspondence between isomonodromic deformations of higher-rank Fuchsian systems and conformal field theory with higher-spin (or W-)symmetry. I will talk about the construction of monodromy fields and W-primary fields in the free-fermionic framework and use it to give the Fredholm-determinant representation of the corresponding isomonodromic tau function.
讲师
日期
2023年10月10日 至 12月26日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周二 | 13:30 - 16:55 | A3-3-103 | ZOOM 08 | 787 662 9899 | BIMSA |
视频公开
公开
笔记公开
公开
讲师介绍
2013于四川大学数学学院基础数学专业获学士学位,2018年于北京大学北京国际数学研究中心获博士学位,2018-2021在清华大学丘成桐数学科学中心做博士后,2021年加入北京雁栖湖应用数学研究院任助理研究员。研究兴趣包括:可积系统,特别是GW理论、LG理论中出现的无穷维可积系统,兴趣在于理解其中的无穷个对称性的代数结构和相关计算。其他兴趣还包括:混合Hodge结构、等单值形变理论、KZ方程。