北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Exponential systems and related topics
Exponential systems and related topics
Let Λ be a discrete subset of the real line. We study the properties of the exponential system {eλ∈Λiλt} as a subset of some Banach space on the real line. The main example is the space L2(E), where E is a measurable subset of the real line. The classical theory corresponds to the case when E is an interval. It includes the famous Beurling-Malliavin theorem about the radius of completeness (1962), description of exponential Riesz bases given by S. Hruschev, N. Nikolski and B. Pavlov (1981), description of Fourier frames given by J. Ortega-Cerda and K. Seip (2002) and many other results. For non-connected sets E the situation becomes much more complicated and we have only partial results. One of them is a construction of Riesz bases from exponentials for a finite union of intervals given by G. Kozma and S. Nitzan (2015). The second is a result about Riesz bases from exponentials for a union of two intervals given by Y. Belov and M. Mironov (2022). In addition we consider complementability problem for exponential systems.
During the lecture course we will consider classical and non-classical theorems and will provide some proofs.
Professor Lars Aake Andersson
讲师
Yurii Belov
日期
2024年06月04日 至 07月11日
位置
Weekday Time Venue Online ID Password
周二,周四 09:50 - 12:15 A3-4-312 ZOOM 01 928 682 9093 BIMSA
课程大纲
1. Preliminaries: entire functions of finite exponential type.
2. Exponential systems on an interval. Shannon-Kotelnikov-Whittaker formula.

Paley-Wiener spaces.
3.Sampling and interpolation. Kadets 1/4 theorem.
4. Hilbert transform. Muckenhoupt condition. Description of real Riesz bases.
5. Cartwright class. First Beurling-Malliavin theorem.
6. Long system of intervals. Beurling-Malliavin density.

Radius of completeness.
7. Fourier frames. Duffin-Shaeffer problem.
8. Sampling in Hilbert spaces of entire functions.
9. Finite union of intervals. Kohlenberg theorem.
10. Kozma-Nitzan theorem. Functions with a spectral gap.
11. Riesz bases from exponentials for union of two intervals.
12. Complementability problem for exponential systems
参考资料
[1] A. Beurling, P. Malliavin, On Fourier transforms of measures with compact support. Acta Math., 107 (1962), 291–309.
[2] S.V. Hruscev, N.K. Nikolskii, B.S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex analysis and spectral theory (Leningrad, 1979/1980), pp. 214–335, Lecture Notes in Math., 864, Springer, Berlin-New York, 1981.
[3] B.S. Pavlov, The basis property of a system of exponentials and the condition of Muckenhoupt. (Russian) Dokl. Akad. Nauk SSSR 247 (1979), 37–40. English transl. in Soviet Math. Dokl. 20 (1979).
[4] J. Ortega-Cerdà, K. Seip, Fourier frames, Annals of Mathematics 155 (3), 789-806, 2002.
[5] G.Kozma, S. Nitzan, Combining Riesz bases, Inventiones Mathematicae, 199 (2014), pp. 267–285.
[6] Y. Belov, Complementability of exponential systems, C. R. Math. Acad. Sci. Paris, 353 (2015), pp.215–218;
[7] Y. Belov, M. Mironov, Exponential Riesz bases in L^2 on two intervals, Int. Math. Res. Not. IMRN, (2024), no. 7, pp. 5403–5433;
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Yurii Belov is a professor at St. Petersburg State University and vice-chair of educational program "Mathematics" headed by Stanislav Smirnov. He got his PhD degree in 2007 (Norwegian University of Science and Technology) and Dr.Sci. degree in 2016 (St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Russia). He was a postdoc at Norwegian University of Science and Technology. Yurii Belov was awarded by the St. Petersburg Mathematical Society the prize for young mathematicians and won the "Young Russian Mathematics" contest (twice). In 2016 he got the L. Euler award from the Government of St. Petersburg.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060