Introduction to convergence and collapsing theory of Riemannian manifolds
This course is an introduction to the convergence and collapsing theory of Riemannian manifolds, which is an important tool in Riemannian geometry. We shall introduce the Gromov-Hausdorff distance and study the convergence theory of Riemannian manifolds with respect to this distance. We will discuss the collapsing theory of Riemannian manifolds with bounded sectional curvatures.
讲师
日期
2023年10月09日 至 12月25日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周一 | 12:45 - 16:10 | A3-3-103 | ZOOM 02 | 518 868 7656 | BIMSA |
修课要求
Riemannian geometry
参考资料
1. Rong Xiaochun, Convergence and collapsing theorems in Riemannian geometry. Handbook of geometric analysis, No. 2, 193–299, Adv. Lect. Math. (ALM), 13, Int. Press, Somerville, MA, 2010.
2. Fukaya Kenji, Metric Riemannian geometry. Handbook of differential geometry. Vol. II, 189–313, Elsevier/North-Holland, Amsterdam, 2006.
3. Fukaya Kenji, Hausdorff convergence of Riemannian manifolds and its applications. Recent topics in differential and analytic geometry, 143–238, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990.
2. Fukaya Kenji, Metric Riemannian geometry. Handbook of differential geometry. Vol. II, 189–313, Elsevier/North-Holland, Amsterdam, 2006.
3. Fukaya Kenji, Hausdorff convergence of Riemannian manifolds and its applications. Recent topics in differential and analytic geometry, 143–238, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990.
视频公开
公开
笔记公开
公开
讲师介绍
乐鹏宇博士毕业于苏黎世联邦理工学院,后在美国密西根大学从事博士后研究,2021年9月入职北京雁栖湖应用数学研究院,担任助理研究员,致力于微分几何和与广义相对论相关的基础数学研究。