北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Combinatorics of Young Tableaux and Configurations
Combinatorics of Young Tableaux and Configurations
In these lectures, I am planning to give a combinatorial introduction to the algebraic Bethe ansatz (type A) with applications to representation theory (Kostka polynomials, LR rule, combinatorics of Young tableaux, internal products of Schur functions, unimodality, and others).
Professor Lars Aake Andersson
讲师
阿纳托利·基里洛夫
日期
2024年03月01日 至 05月31日
位置
Weekday Time Venue Online ID Password
周二,周五 13:30 - 15:05 A3-1a-204 ZOOM 45a 881 4245 9733 BIMSA
修课要求
Basic knowledge of linear algebra and combinatorics, a bit about representations of symmetric and linear algebraic groups. Some knowledge of algebraic Bethe ansatz can be helpful, but not necessary.
课程大纲
1. Basic definitions and properties of the theory of partitions: partitions, Young tableaux, some partition identities.
2. Symmetric group. Definition and basic properties, total and Bruhat’s orders. Review of the theory of symmetric functions.
3. Symmetric functions. Basic properties and identities: Cauchy, Jacobi–Trudi; Schur functions.
4. Overview of the representation theory of symmetric and general linear groups. Irreducible representations, weight subspaces, character formulae and corresponding combinatorial formulae, Frobenius isomorphism.
5. Tensor product of representation of symmetric (Kronecker’s product) and general linear groups. The Littlewood–Richardson rule.
6. Overview of algebraic Bethe ansatz (ABA) for $sl_2$ XXX model. Bethe ansatz equations (BAE).
7. Combinatorial completeness of ABA. String analysis of BAE, vacancy and quantum numbers.
8. Combinatorial analysis/formulation of BAE. Rigged configurations ($sl_2$ case), reduction of proof of the completeness of BAE to the certain algebraic identity (and its generalizations).
9. Algebraic proof of the above $sl_2$-generalization of ‘algebraic completeness’ generalized $sl_2$ Heisenberg model.
10. Generalized $sl_n$ XXX model and the corresponding BAE. String conjecture and string analysis of BAE, corresponding combinatorial identities.
11. Rigged configurations for $sl_n$ XXX model. The set $RC_\lambda(R)$ of rigged configurations corresponding to partition $\lambda$, and sequence of rectangular shape partitions $R$. Sketch of the proof of the correspondence between $RC_\lambda(R)$ and solutions of BAE.
12. Parabolic Kostka polynomials. q-analog of Kostka numbers, the definition of Kostka polynomials. Lascoux–Schützenberger statistics ‘charge’.
13. Charge and Kostka polynomials. Lascoux–Schützenberger theorem, charge of a configuration $RC_\lambda(R)$.
14. Construction of RC–bijection (case $sl_2$).
15. Combinatorial properties of $RC$–bijection. Combinatorial proof of unimodality of principal specialization of Schur polynomials. New interpretations of Littlewood–Richardson and Kronecker coefficients.
16. Some combinatorial properties of $RC$–bijection: open questions and conjectures.
参考资料
[1] I.G. Macdonald, Symmetric functions and Hall polynomials.
[2] A.N. Kirillov, Rigged Configurations and Unimodality.
[3] A.N. Kirillov, Rigged Configurations and Catalan, Stretched Parabolic Kostka Numbers and Polynomials: Polynomiality, Unimodality and Log-concavity.
[4] A.N. Kirillov, An invitation to the generalized saturation conjecture.
[5] A.N. Kirillov, A. Schilling, M. Shimozono, A bijection between Littlewood–Richardson tableaux and rigged configurations.
[6] A.N. Kirillov, Ubiquity of Kostka polynomials.
[7] A.N. Kirillov, Combinatorics of Young tableaux and rigged configurations.
[8] A.N. Kirillov & N.Yu. Reshetikhin, The Bethe ansatz and combinatorics of Young tableaux.
[9] R. Stanley, Enumerative Combinatorics, vol.1.
[10] A. Lascoux, Symmetric Functions and Combinatorial Operators on Polynomials.
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Anatol Kirillov的研究领域是可积系统、表示论、特殊函数、代数组合学和代数几何。他在过去的20年里,在日本不同的大学担任教授。2022年,他加入BIMSA任研究员。
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060