Class field theory
The goal of class field theory is to describe the Galois extensions of a local or global field in terms of the arithmetic of the field itself. For abelian extensions, the theory was developed between roughly 1850 and 1930 by Kronecker, Weber, Hilbert, Takagi, Artin, Hasse, and others. This course begins with an analysis of the quadratic case of Class Field Theory via Hilbert symbols, in order to give a more hands-on introduction to the ideas of Class Field Theory. More advanced topics in number theory are discussed in this course, such as Galois cohomology, proofs of class field theory, modular forms and automorphic forms, Galois representations, and quadratic forms.
讲师
日期
2023年09月18日 至 12月18日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周一,周三 | 09:50 - 11:25 | A3-2-201 | ZOOM 08 | 787 662 9899 | BIMSA |
参考资料
Class Field Theory by J.S. Milne.
视频公开
公开
笔记公开
公开
讲师介绍
胡创强,2021年秋季入职BIMSA。主要研究领域包括:编码理论,函数域及数论,奇点理论。近年来在量子码,代数几何码,Drinfeld模,椭圆奇点,丘-李代数等课题研究中取得了一系列学术成就。在《IEEE Trans. on IT.》《Finite Fields and Their Applications》《Designs, Codes and Cryptography》等著名学术期刊上发表论文13篇。先后多次应邀出席国内外学术会议并作大会报告。