北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Birational Geometry Workshop
Birational Geometry Workshop
网站
https://www.bimsa.cn/newsinfo/759703.html
组织者
考切尔•比尔卡尔 , Junpeng Jiao , Yu Zou
演讲者
Florin Ambro ( )
Yusuke Nakamura ( )
Keiji Oguiso ( )
Susanna Zimmermann ( )
日期
2022年10月21日 至 22日
日程安排
时间\日期 10-21
周五
08:30-09:30 Keiji Oguiso
10:00-11:00 Yusuke Nakamura
14:00-15:00 Susanna Zimmermann
15:30-16:30 Florin Ambro

*本页面所有时间均为北京时间(GMT+8)。

议程
    2022-10-21

    08:30-09:30 Keiji Oguiso

    Kawaguchi-Silverman Conjecture for birational automorphisms of smooth irrational varieties

    Kawaguchi--Silverman Conjecture (KSC) predicts an interesting relation between arithmetic and algebraic dynamics that for a birational self-map $f$ of a smooth projective variety $X$ defined over an algebraic closure $L$ of the field of rational numbers, that the arithmetic degree $\alpha_f(x)$ exists and coincides with the first dynamical degree $\delta_f$ for any $L$-point $x$ of $X(L)$ with a Zariski dense orbit. In this talk, after a brief introduction of arithmetic degree and KSC , we show that KSC holds when $X$ has Kodaira dimension zero and irregularity $q(X) \ge \dim X -1$ or $X$ is an irregular threefold (modulo one possible exception). We also study the existence of Zariski dense orbits, with explicit examples. This is a joint work with Professors Jungkai Chen and Hsueh-Yung Lin.

    10:00-11:00 Yusuke Nakamura

    Minimal log discrepancies of quotient singularities

    The minimal log discrepancy (MLD) is an invariant of singularity defined in the context of the minimal model program. In this talk, we will discuss the minimal log discrepancies of quotient singularities. I will explain that the PIA (precise inversion of adjunction) conjecture and Shokurov's index conjecture hold for quotient singularities. For the PIA conjecture, the theory of the arc space of a quotient singularity established by Denef and Loeser is an essential tool. For the index conjecture, Jordan's theorem on finite linear groups is essentially used. This is joint work with Kohsuke Shibata.

    14:00-15:00 Susanna Zimmermann

    Involutions of the real plane

    The problem of classifying birational involutions of the complex plane goes back to Bertini, whose classification was however incomplete, which was completed by Bayle-Beauville more than twenty years ago. They prove that if an involution has a fixed irrational curve, then the isomorphism class of the curve determines the conjugacy class of the involution. It turns out that this is not true over the real numbers. In this talk I want to motivate the classification of birational involutions of the real projective plane.

    15:30-16:30 Florin Ambro

    Succesive minima of line bundles

    The Seshadri constant of a polarized variety (X,L) at a point x measures how positive is the polarization L at x. If x is very general, the Seshadri constant does not depend on x, and captures global information on X. Inspired by ideas from the Geometry of Numbers, we introduce in this talk successive Seshadri minima, such that the last one is the Seshadri constant at a point, and the first one is the width of the polarization at the point. Assuming the point is very general, we obtain two results: a) the product of the successive Seshadri minima is proportional to the volume of the polarization; b) if X is toric, the i-th successive Seshadri constant is proportional to the i-th successive minima of a suitable 0-symmetric convex body. Based on joint work with Atsushi Ito.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060