北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Asymptotic representation theory
Asymptotic representation theory
One of the classical objects in asymptotic representation theory is the infinite symmetric group. The main objective of this course is to explore various questions and methods of the theory by examining the Plancherel measure on the set of Young diagrams, which parametrize the irreducible representations of symmetric groups. We will begin with the study of the limit shape using variational calculus techniques, followed by a discussion on the fluctuations around the limit shape. The theory of determinantal point processes provides a convenient framework for studying these fluctuations, and it also allows us to establish connections with random matrices, and also with TASEP and similar point processes.

This course serves as a continuation of the representation theory of symmetric groups course. However, we intend to review all the main concepts discussed in the previous course at the beginning of the current course. The only prerequisites are basic courses on algebra, probability and functional analysis. Additionally, we will briefly discuss the connection between this course and "From free fermions to limit shapes and beyond" by Anton Nazarov.
讲师
帕维尔·尼基丁
日期
2023年09月19日 至 12月19日
位置
Weekday Time Venue Online ID Password
周二,周四 13:30 - 15:05 A3-1a-204 ZOOM 05 293 812 9202 BIMSA
修课要求
Undergaduate Algebra, Probability and Functional Analysis
课程大纲
In the course we will mainly discuss the following topics:

representations of the symmetric groups, Bratteli diagrams, Young graph, hook length formula;

patience sorting, Robinson-Schensted-Knuth algorithm, Cauchy identity, Howe duality;

Plancherel measure, hook integral, variational problem, Hilbert transform, fractional calculus, limit shape, asymptotics of the longest increasing subsequences;

fluctuations around the limit shape, determinantal point processes, sine process, Airy process, discrete Bessel kernel, poissonization and depoissonization, Tracy-Widom distribution, Baik-Deift-Johansson Theorem.
参考资料
Vershik, A. M., and Kerov, S. V. Asymptotics of the Plancherel measure
of the symmetric group and the limiting shape of Young tableaux. Soviet Math.
Dokl., 18, 1977, pp. 527–531.

Baik, J., Deift, P., and Johansson, K. On the distribution of the length
of the longest increasing subsequence of random permutations. J. Amer. Math.
Soc., 12, 1999, pp. 1119–1178.

Romik, D. The Surprising Mathematics of Longest Increasing Subsequences.

Okounkov, A., Vershik, A. A new approach to representation theory of symmetric groups. Selecta Mathematica, New Series 2, 581, 1996.

Fulton, Young Tableau.

A.M. Vershik and S.V. Kerov, The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of K0-functor for AF-algebas). In: Representations of Lie Groups and Related Topics. Advances in Contemp. Math., vol. 7 (A.M. Vershik and D.P. Zhelobenko, editors). New York, NY; London: Gordon and Breach, 1990, pp. 39–117.
听众
Advanced Undergraduate , Graduate , 博士后
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060