Theory of schemes and stacks, Derived Categories and Intersection theory II
This course is targeting 3 major segments of algebraic geometry. The theory of schemes and stacks following Grothendieck’s EGA / SGA and Deligne’s work on stacks. The derived category of coherent sheaves, its properties and relevance to birational geometry and moduli theory, and intersection theory on schemes and stacks. Students who passed a basic course in algebraic geometry (e.g. Hartshorne’s first 3 chapters) must be able to follow the course with no further pre-requisite. The course will offer an extensive analysis of all three segments and aims at providing the detailed background for algebraic geometry students to perform advanced research on geometry of schemes and moduli, say in the context of birational geometry, enumerative algebraic geometry or derived algebraic geometry.

讲师
日期
2025年02月21日 至 06月20日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周五 | 09:50 - 12:15 | Shuangqing-B725 | ZOOM 09 | 230 432 7880 | BIMSA |
修课要求
Basic course in Algebraic Geometry (first 3 chapters of Hartshorne)
课程大纲
1. Review of Scheme theory
• 1.1: Review of Schemes (Hartshorne or EGA I, II)
• 1.2. Review of Sheaf Cohomology (EGA 3)
• 1.3. Residue and Duality (EGA 10)
2. Theory of stacks
• 2.1 Champs Algebrique (G. Lamoun)
• 2.2. Sheaf Cohomology, Lefschetz Local to global theorems (SGA 2)
3. Intersection theory
• 3.1 Intersection theory and Grothendieck -Riemann-Roch (EGA 11, SGA 6)
• 3.2 Fulton’s deformation to normal cone (Fulton’s Intersection theory)
• 3.3. Computations (Fulton’s Intersection theory)
4. Derived categories of coherent sheaves:
4.1. Derived Category of coherent sheaves, Properties (FM transforms in AG, Daniel Huybrechts) 4.2 Derived Category and canonical bundle (FM transforms in AG, Daniel Huybrechts)
4.3. FM transforms (FM transforms in AG, Daniel Huybrechts)
4.4. Spherical and Exceptional objects (FM transforms in AG, Daniel Huybrechts)
5. Let us now compute! Intersection theory in derived category:
5.1. Counting Curves in derived category (Fulton’s intersect. theory and collective papers in DT/GW) 5.2. Counting surfaces in derived category (Fulton’s intersect. theory and collective papers in DT/GW)
Note: This is the collective syllabus for both Fall 2024 and Spring 2025 courses combined.
• 1.1: Review of Schemes (Hartshorne or EGA I, II)
• 1.2. Review of Sheaf Cohomology (EGA 3)
• 1.3. Residue and Duality (EGA 10)
2. Theory of stacks
• 2.1 Champs Algebrique (G. Lamoun)
• 2.2. Sheaf Cohomology, Lefschetz Local to global theorems (SGA 2)
3. Intersection theory
• 3.1 Intersection theory and Grothendieck -Riemann-Roch (EGA 11, SGA 6)
• 3.2 Fulton’s deformation to normal cone (Fulton’s Intersection theory)
• 3.3. Computations (Fulton’s Intersection theory)
4. Derived categories of coherent sheaves:
4.1. Derived Category of coherent sheaves, Properties (FM transforms in AG, Daniel Huybrechts) 4.2 Derived Category and canonical bundle (FM transforms in AG, Daniel Huybrechts)
4.3. FM transforms (FM transforms in AG, Daniel Huybrechts)
4.4. Spherical and Exceptional objects (FM transforms in AG, Daniel Huybrechts)
5. Let us now compute! Intersection theory in derived category:
5.1. Counting Curves in derived category (Fulton’s intersect. theory and collective papers in DT/GW) 5.2. Counting surfaces in derived category (Fulton’s intersect. theory and collective papers in DT/GW)
Note: This is the collective syllabus for both Fall 2024 and Spring 2025 courses combined.
参考资料
Grothendieck EGA I,II, III, X, XI
Grothendieck SGA VI
Champs Algebrique (G. Lamoun)
Fourier Mukai Transform in Algebraic Geometry (Daniel Huybrechts) Intersection theory (W. Fulton)
Grothendieck SGA VI
Champs Algebrique (G. Lamoun)
Fourier Mukai Transform in Algebraic Geometry (Daniel Huybrechts) Intersection theory (W. Fulton)
听众
Graduate
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Artan Sheshmani主要研究方向为代数几何、 微分几何和弦理论的数学方面。他于2022年加入BIMSA任研究员一职,曾任哈佛大学数学科学及其应用研究所(CMSA)西门斯同调镜像对称合作项目资深成员(教授),及美国哈弗-麻省理工人工智能和基本交互作用研究所成员。
2020年至2023年期间,他在美国迈阿密大学美国数学科学研究所担任访问教授一职,并参与了关于“霍奇理论及其应用”的研究合作项目。2020-2022年,他在哈佛大学物理系担任访问教授。2016-2022年,他在丹麦奥胡斯大学数学学院(原量子几何与模空间中心)担任副教授。
他的主要研究方向集中在Gromov Witten理论、Donaldson Thomas理论、Calabi-Yau几何以及弦理论的数学方面。他研究在Calabi Yau空间上的束和曲线的模空间的几何学,其中部分工作在研究弦理论理论的数学方面起到重要作用。在他的研究中,他致力于理解在复变化的各个维度上的这些模空间的几何对偶性,并目前正在从导出几何和几何表示理论的角度拓展这些项目。
在与丘成桐(北京雁栖湖应用数学研究院、清华大学)、Cody Long(哈佛大学物理系)以及Cumrun Vafa(哈佛大学数学系及物理学系)的合作工作中,他负责具有非同调支持的束的几何模空间及其相关的非BPS(非全纯)计数不变量的相关研究。
他的名为“嵌入曲面,对偶和量子数论”的项目于2019年获得IRFD“研究领袖”基金100万美金资助,成为该项目的30名资助人之一,该项目还获得了哈佛大学CMSA研究所和奥胡斯大学的40万美金额外资助。关于IRFD“研究领袖”项目的详细信息请参阅:https://dff.dk/en/grants/research-leaders-2018。
2020年至2023年期间,他在美国迈阿密大学美国数学科学研究所担任访问教授一职,并参与了关于“霍奇理论及其应用”的研究合作项目。2020-2022年,他在哈佛大学物理系担任访问教授。2016-2022年,他在丹麦奥胡斯大学数学学院(原量子几何与模空间中心)担任副教授。
他的主要研究方向集中在Gromov Witten理论、Donaldson Thomas理论、Calabi-Yau几何以及弦理论的数学方面。他研究在Calabi Yau空间上的束和曲线的模空间的几何学,其中部分工作在研究弦理论理论的数学方面起到重要作用。在他的研究中,他致力于理解在复变化的各个维度上的这些模空间的几何对偶性,并目前正在从导出几何和几何表示理论的角度拓展这些项目。
在与丘成桐(北京雁栖湖应用数学研究院、清华大学)、Cody Long(哈佛大学物理系)以及Cumrun Vafa(哈佛大学数学系及物理学系)的合作工作中,他负责具有非同调支持的束的几何模空间及其相关的非BPS(非全纯)计数不变量的相关研究。
他的名为“嵌入曲面,对偶和量子数论”的项目于2019年获得IRFD“研究领袖”基金100万美金资助,成为该项目的30名资助人之一,该项目还获得了哈佛大学CMSA研究所和奥胡斯大学的40万美金额外资助。关于IRFD“研究领袖”项目的详细信息请参阅:https://dff.dk/en/grants/research-leaders-2018。