北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > The mathematics for control and filtering
The mathematics for control and filtering
"The Mathematics for Control and Filtering" is an advanced course that provides a comprehensive exploration of the mathematical foundations underlying control theory and filtering techniques. Beginning with the fundamentals of probability theory and stochastic processes, the course progresses through stochastic analysis to delve into the intricacies of filtering and stochastic control problems. The curriculum also addresses cutting-edge research topics, including filtering on manifolds and applications of neural networks in control systems.
Professor Lars Aake Andersson
讲师
康家熠
日期
2024年09月10日 至 12月17日
位置
Weekday Time Venue Online ID Password
周二 13:30 - 16:55 A3-4-101 ZOOM B 462 110 5973 BIMSA
修课要求
Probability, Ordinary Differential Equations and Some elementary background in analysis.
课程大纲
Lecture Schedule:
Lecture 1 (9.10) – Review of Probability Theory
Probability Spaces and Events
Elementary Properties
Random Variables and Expectation Values
Properties of the Expectation and Inequalities
Limits of Random Variables
Induced Measures, Independence, and Absolute Continuity
Lecture 2 (9.24) – Random Process

Elementary Properties of Conditional Expectation
Discrete Time Stochastic Processes and Filtrations
Martingales
Martingale Convergence Theorem
The Radon-Nikodym Theorem Revisited
Separable σ-algebras
Proof of the Radon-Nikodym Theorem
Conditional Expectations and Martingales
Kolmogorov Definition
Martingales, Supermartingales, Submartingales
Stopping Times and Optional Stopping
Supermartingale Inequality
Lecture 3 (10.8) – Continuous Process and the Wiener Process

Continuous Process
Continuous Time Stochastic Processes
Equivalent Processes and Measurability
Continuous Processes
Basic Properties and Uniqueness
Existence: A Multiscale Construction
Properties of the Wiener Process
White Noise
Lecture 4 (10.15) – The Ito Integral Part I

What is Wrong with the Stieltjes Integral?
Before Defining the Ito Integral
Revisiting the Stieltjes Integral
Ito Integral
A Bare-Bones Construction
The Full-Blown Ito Integral
Continuous Sample Paths
Localization
Elementary Properties
Lecture 5 (10.22) – The Ito Integral Part II

Ito Calculus
Girsanov's Theorem
Martingale Representation Theorem
Lecture 6 (10.29) – Stochastic Differential Equations

Stochastic Differential Equations: Existence and Uniqueness
Markov Property and Kolmogorov’s Equations
Weak and Strong Solutions
Wong-Zakai Approximation
Euler-Maruyama Method
Stochastic Stability
Beyond the Lipschitz Condition
Lecture 7 (11.5) – Introduction to Stochastic Control

Stochastic Control Problems and Dynamic Programming
Introduction to stochastic control theory
Dynamic programming and Bellman's equation in stochastic control
Controlled Stochastic Differential Equations
Definition and examples of controlled stochastic differential equations (SDEs)
Applications of controlled SDEs in finance and engineering
Numerical methods for solving controlled SDEs
Lecture 8 (11.12) – Filtering Problem

Introduction to Filtering Theory
Observing noisy data
The optimal filtering problem
Linear and non-linear filtering problems
Bayesian Framework for Filtering
Recursive Bayesian estimation
Kalman filter as a special case of linear filtering
Extensions to non-linear filtering
Lecture 9 (11.19) – The Finite Dimensional Filter

Finite Dimensional Filters
Conditions for finite-dimensional filters
Examples of finite-dimensional filtering problems
Relationship between Kalman filter and finite-dimensional filters
Applications of Finite Dimensional Filters
Practical examples in control and signal processing
Lecture 10 (11.26) – Numerical Filtering Algorithms

Overview of Numerical Methods for Filtering
Discrete-time approximations
Particle filters and sequential Monte Carlo methods
Comparison between particle filters and Kalman filters
Implementation Challenges
Computational efficiency
Dealing with high-dimensional state spaces
Strategies to improve performance of particle filters
Lecture 11 (12.3) – The Yau and Yau Algorithms

Introduction to Yau's Filtering Algorithm
Derivation of Yau's algorithm
Key properties and convergence results
Differences from traditional filtering techniques
Yau and Yau Algorithms in Practice
Real-world applications of Yau’s algorithm
Implementing Yau’s algorithm in high-dimensional settings
Lecture 12 (12.10) – The Feedback Particle Filter and Optimal Transport

Feedback Particle Filter (FPF)
Overview of FPF for nonlinear filtering
Connections to optimal transport theory
FPF algorithm and numerical implementation
Optimal Transport in Filtering
Using optimal transport methods to improve filter accuracy
Applications of optimal transport in particle filtering
Lecture 13 (12.17) – Optimal Stopping and Impulse Control

Optimal Stopping Problems
Definition of optimal stopping in stochastic control
Classical examples: American options, real options
Dynamic programming approach to optimal stopping
Impulse Control
Introduction to impulse control in stochastic systems
Applications in inventory control, maintenance, and finance
Solving impulse control problems using dynamic programming

参考资料
Fundamentals of Stochastic Filtering, Alan Bain and Dan Crisan
听众
Advanced Undergraduate , Graduate , 博士后
视频公开
公开
笔记公开
公开
语言
中文 , 英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060