北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > The Path Integral in Quantum Mechanics and in the Quantum Field Theory
The Path Integral in Quantum Mechanics and in the Quantum Field Theory
讲师
Hrachya Babujyan
日期
2025年10月20日 至 12月09日
位置
Weekday Time Venue Online ID Password
周一,周二 00:00 - 00:00 - - -
课程大纲
1.The Path Integral in Quantum Mechanics.
Introduction. The Classical Action. The Quantum Mechanical Amplitude. The Classical Limit. The Sum Over Paths. The Path Integral. The Rule for Two Events. Extension to Several Events. The Free Particles. The Wave function. Gaussian Integrals. Motion in a Potential Field. The Path Integral as a Functional. Interaction of a Particle and Harmonic Oscillator. Evaluation of Path Integrals by Fourier Series. The Schrodinger Equation.

2.Path Integral In Quantum Field Theory.
Introduction. The Path Integral. Generating functionals. Where is the i-epsilon?? Gauge Invariance. Fermionic Path Integral. Schwinger-Dyson Equations. Ward Takahashi Identity.

3.Renormalization.
Casimir Effect. Hard Cutoff. Regular Independence. Scalar Field Theory Example. Vacuum Polarization . Scalar Theory. Vacuum Polarization in QED. Physics of Vacuum Polarization. The anomalous Magnetic Moment. Extracting the Moment. Evaluating the Graphs. Mass Renormalization. Vacuum Expectation Values. Electron Self-Energy. Pole Mass. Minimal Subtraction. Summary and Discussion. Renormalized Perturbation Theory. Counterterms.Two-point Functions. Three-point functions. Renormalization Conditions in QED. $Z_1 =Z_2$: implications and proof. Infrared Divergences. $e^+e^- \to \mu^+\mu^- (+\gamma)$. Jets. Other Loops. A Dimensional Regularization. Renormalizability. Renormalizabilty of GED . Non-Renormalizable Field Theories. Non-Renormalizable Theories. The Schrodinger Equation. The 4-Fermi Theory. Theory of Mesons. Quantum Gravity . Summary of Non-Renormalizable Theories. Mass Terms and Naturalness. Super-Renormalizable Theories.
视频公开
公开
笔记公开
公开
讲师介绍
Hrachya Babujian (Babujyan) received his PhD from L. D. Landau Institute of Theoretical Physics in Moscow, where he was PhD student of A.A. Belavin. The Habilitation he get in Yerevan Physics Institute (Alikhanyan National Lab) where he currently holds the title Leading Scientific Researcher. In the 1990’s he was working in Bonn University and Berlin FU where he enjoy the Mathematical Physics group of R. Schrader. He also work in Sao Carlos University (Brazil) in Brookhaven National Lab, Simons Center and Chicago University. H. Babujian’s research interests are in Integrability in 2d statistical models and 1+1 dimensional quantum field theories, 1d spin chains, conformal blocks, form factors and thermodynamics of integrable models. Now his interest is the applications of the exact form factors in 1+3 dimensional lepton-hadron scattering in small Bjorkan x case.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060