Statistical Learning and Applications
This course offers a comprehensive introduction to statistical learning methods and their applications across diverse research domains, with particular emphasis on data-intensive problems in biological and biomedical sciences. It covers classical statistical learning methods, modern machine learning algorithms, and essential deep learning techniques, followed by real-world case studies from genomics, transcriptomics, phenomics, and network biology. Students will learn not only how to select, implement, and evaluate models, but also how to adapt them to high-dimensional, noisy, and heterogeneous biological datasets. The course includes literature review sessions focusing on landmark papers and state-of-the-art methods, enabling students to critically assess methodology and apply it to their own research.

讲师
日期
2025年09月23日 至 12月16日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周二 | 13:30 - 16:55 | A3-4-312 | ZOOM 01 | 928 682 9093 | BIMSA |
课程大纲
1. Introduction & Mathematical Foundations
2. Statistical Learning Fundamentals
3. Deep Learning Fundamentals
4. Applications in Biological Research
2. Statistical Learning Fundamentals
3. Deep Learning Fundamentals
4. Applications in Biological Research
听众
Undergraduate
, Graduate
, 博士后
, Advanced Undergraduate
视频公开
不公开
笔记公开
不公开
语言
中文
, 英文