北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Spectral Graph Theory over Ordered Fields \(ICBS\)
Spectral Graph Theory over Ordered Fields
The goal of this course is to present different aspects of spectral graph theory and random walks on graphs. Together with classical weighted graphs with positive real edge-weights we will discuss graphs, whose edge-weights belong to an arbitrary real-closed ordered field. The non-Archimedean fields contain infinitely small elements, which leads to the phenomenon of existence of strictly monotone bounded non-converging sequences. The latest leads to new effects on graphs, in particular, on infinite ones.

We will discuss such aspects as capacity of graphs, type of a vertex in the corresponding random walk (recurrence/transience) and spectral properties. The concepts will be illustrated with numerous examples.
Professor Lars Aake Andersson
讲师
Anna Muranova
日期
2025年04月07日 至 05月21日
位置
Weekday Time Venue Online ID Password
周一,周三 10:40 - 12:15 A3-4-101 ZOOM 05 293 812 9202 BIMSA
修课要求
Preliminary knowledge in analysis, probability theory, linear algebra and abstract algebra are required.
课程大纲
(1) Finite real weighted graphs.
Dirichlet forms. Laplace operator. Spectral properties. Dirichlet problem. Electrical networks. Energy. Minimization of energy. Related Markov chain and random walk.
(2) Infinite real weighted graphs.
Dirichlet problem. Capacity. Markov chain: recurrence and transience. Equivalent definitions of capacity. Relation between capacity and type of state.
(3) Non-Archimedean ordered fields.
Non-Archimedean property. Infinitesimals. Order topology. Convergence. Examples. The Levi-Civita field.
(4) Concept of graphs over non-Archimedean ordered fields.
Laplace operator. Spectral properties. Dirichlet problem. Energy. Electrical networks. Capacity and type of graph.
(5) Graph over non-Archimedean ordered fields and Markov chain.
Projection of non-Archimedean weights on reals. Directed graphs. Markov chains: essential and irreducible classes. Projection of capacity vs. type of state.
参考资料
[1] F.Fischer, M. Keller, A. Muranova, and N. Nicolussi. Capacity of infinite graphs over non-Archimedean ordered fields. Journal of Mathematical Analysis and Applications. Volume 543, Issue 2, Part 2, 15 March 2025.
[2] M. Keller, D. Lenz, and R. K. Wojciechowski. Graphs and discrete Dirichlet spaces, volume 358 of Grundlehren der mathematischen Wissenschaften. Springer, 2021.
[3] M. Keller, A. Muranova. Recurrence and transience for non-Archimedean and directed graphs. arXiv: 2406.17344.
[4] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Revised Third Edition. Springer, 2002.
[5] A. Muranova. On the notion of effective impedance. Operator and Matrices,Volume 14, Number 3(2020), p. 723-741
[6] W. Woess.Denumerable Markov Chains. EMS, 2009
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060