北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Singular Integrals
Singular Integrals
The course covers singular integrals, maximal functions, and applications to differentiation theory and partial differential equations. If time permits, we will also discuss oscillatory integrals, in particular Hörmander’s Fourier integral operators.
讲师
尤里·柳巴尔斯基
日期
2025年09月23日 至 12月18日
位置
Weekday Time Venue Online ID Password
周二,周四 09:50 - 11:25 Shuangqing-B626 Zoom 16 468 248 1222 BIMSA
修课要求
I plan to remind the main notions/facts and try to explain them informally if need be.
• Real Analysis (basic measure theory, Lebesgue integration).
• Basic Functional Analysis (Hilbert spaces).
• Introductory Fourier analysis.
课程大纲
Week 1 – Introduction & Motivation
• Lecture 1: What are singular integrals? Examples from harmonic analysis and PDEs.
• Lecture 2: Preliminaries: $L^p$ spaces, Hölder/Minkowski inequalities, Fourier transform basics.

Week 2 – Classical Examples
• Lecture 3: The Hilbert transform on $\mathbb{R}$. Principal value definition.
• Lecture 4: Riesz transforms on $\mathbb{R}^n$.

Week 3 – Calderón–Zygmund Kernels
• Lecture 5: Kernel conditions (size & smoothness).
• Lecture 6: Singular integral operators (formal definition).

Week 4 – $L^2$ Theory
• Lecture 7: Boundedness of singular integrals on $L^2$.
• Lecture 8: Weak $(1,1)$ bounds (sketch proof using Calderón–Zygmund decomposition).

Week 5 – Interpolation and $L^p$ Theory
• Lecture 9: Marcinkiewicz interpolation theorem.
• Lecture 10: Boundedness of Calderón–Zygmund operators on all $L^p$, $ 1< p<\infty$.

Week 6 – Maximal Functions
• Lecture 11: Hardy–Littlewood maximal operator, weak $(1,1)$.
• Lecture 12: Differentiation of integrals, Vitali covering lemma.

Week 7 – Applications I
• Lecture 13: Fourier series, Carleson’s theorem (motivation).
• Lecture 14: Harmonic functions and Poisson kernel.

Week 8 – Applications II
• Lecture 15: Calderón’s problem in elliptic PDEs (basic sketch).
• Lecture 16: Singular integrals in boundary value problems.

Week 9 – Weighted Inequalities
• Lecture 17: $A_p$ weights (definition, examples).
• Lecture 18: Weighted norm inequalities for singular integrals.

Week 10 - Application III
• Lecture 19: Weighted Hardy spaces.
• Lecture 20: Application in signal analysis

Week 11 – Maximal Singular Integrals
• Lecture 19: Maximal truncations and their boundedness.
• Lecture 20: Comparison with Hardy–Littlewood maximal function.

Week 12 – Oscillatory Integrals (Introductory)
• Lecture 21: Examples of oscillatory integrals (Fourier integral operators).
• Lecture 22: Hörmander–Mikhlin multiplier theorem (statement, applications).

If time permits:
• Survey of the course, say something about further developments
参考资料
• E.M. Stein, Singular Integrals and Differentiability Properties of Functions, (Princeton, 1970)
• E.M. Stein & R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, (Princeton Lectures in Analysis III, 2005)
• J. Duoandikoetxea, Fourier Analysis (AMS Graduate Studies in Mathematics, Vol. 29, 2001)
• L. Grafakos, Classical Fourier Analysis (3rd ed.) (Springer, 2014)
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Yurii Lyubarskii received PhD degree in mathematics in 1974 in the Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences and Doctor degree in St. Petersburg branch of Russian mathematical institute in 1990. He taught at the Norwegian University of Science and Technology and also at St. Petersburg State University. Scientific interests of Yu. Lyubarskii include complex and harmonic analysis and applications to the signal analysis.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060