Shock Development in Relativistic Fluids
This course explores the mathematical theory of shock formation and development in relativistic fluids, focusing on spherically symmetric solutions. Building on Christodoulou's foundational work in shock formation, the course examines the shock development problem—a free boundary problem where classical solutions to the Euler equations break down, and discontinuities (shocks) emerge. We begin with foundational concepts in relativistic fluid dynamics, including conservation laws, jump conditions, and acoustic geometry. The course then turns to the geometric description of shock formation, the maximal development of initial data, and the solution to the shock development problem—a free boundary problem with singular initial data. Through iterative methods and characteristic coordinates, we construct and analyze solutions beyond shock formation, emphasizing uniqueness, regularity, and physical implications.
讲师
日期
2025年09月25日 至 12月18日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周四 | 13:30 - 16:55 | Shuangqing-C658 | ZOOM 04 | 482 240 1589 | BIMSA |
修课要求
Partial Differential Equation, Differential Geometry
参考资料
Christodoulou, Demetrios; Lisibach, André: Shock development in spherical symmetry. Ann. PDE 2 (2016), no. 1, Art. 3, 246 pp.
Christodoulou, Demetrios: The shock development problem. EMS Monogr. Math. European Mathematical Society (EMS), Zürich, 2019. ix+920 pp.
Christodoulou, Demetrios: The shock development problem. EMS Monogr. Math. European Mathematical Society (EMS), Zürich, 2019. ix+920 pp.
听众
Advanced Undergraduate
, Graduate
, 博士后
视频公开
不公开
笔记公开
不公开
语言
中文
讲师介绍
乐鹏宇博士毕业于苏黎世联邦理工学院,后在美国密西根大学从事博士后研究,2021年9月入职北京雁栖湖应用数学研究院,担任助理研究员,致力于微分几何和与广义相对论相关的基础数学研究。