北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Representation theory of the infinite symmetric group \(ICBS\)
Representation theory of the infinite symmetric group
This course explores the representation theory of infinite symmetric groups, a fascinating extension of the well-known representation theory of finite groups. Representation theory traditionally relies on character theory, a method pioneered by G. Frobenius in the early 20th century and later expanded by H. Weyl for classical Lie groups. This course demonstrates that a similar technique can be developed for infinite-dimensional analogs of these groups, particularly focusing on the infinite symmetric group—the group of all finite permutations of the natural numbers.

The course begins with a comprehensive introduction to Thoma’s Theorem, a central result that classifies the extreme characters (analogs of the irreducible characters) of the infinite symmetric group. This theorem will be explored from various perspectives, revealing connections with other branches of mathematics, including:
- The classification of totally positive sequences,
- The classification of Schur-positive multiplicative functionals on the algebra of symmetric functions,
- The description of the entrance boundary for certain Markov chains related to the Young graph.

While the first part of the course primarily focuses on character theory, as it provides sufficient tools for addressing classification problems (similar to the case of finite groups), the second part delves into the study of unitary representations of the infinite symmetric group. Time permitting, the course will conclude with a brief discussion on the connections between the developed theory and probabilistic models in mathematical physics of representation theoretical origin.

Prerequisites: Participants should have a basic understanding of functional analysis and probability theory. While prior knowledge of the representation theory of finite groups is beneficial, it is not mandatory. The course will also utilize concepts from the representation theory of finite symmetric groups and the theory of symmetric functions; however, all necessary background will be provided. Previous coursework in these areas, such as courses offered in the previous academic year, may ease comprehension but is not required.
Professor Lars Aake Andersson
讲师
帕维尔·尼基丁
日期
2024年09月12日 至 12月12日
位置
Weekday Time Venue Online ID Password
周二,周四 13:30 - 15:05 A3-2-303 ZOOM 05 293 812 9202 BIMSA
修课要求
Undergaduate Algebra, Probability and Functional Analysis
参考资料
Borodin and G. Olshanski, Z-Measures on partitions, Robinson–Schensted–Knuth correspondence, and β = 2 ensembles. In: Random Matrix Models and their Applications (P.M. Bleher and A.R. Its, eds). MSRI Publications, vol. 40, Cambridge University Press, 2001, pp. 71–94.

A. Borodin, G. Olshansky. Representations of the infinite symmetric group. Cambridge University Press, 2017.

I.G. Macdonald, Symmetric Functions and Hall Polynomials. 2nd edition. Oxford University Press, 1995.

A. Okounkov, Thoma’s theorem and representations of the infinite bisymmetric group. Funct. Anal. Appl. 28 (1994), no. 2, 100–107.

G. Olshanski, An introduction to harmonic analysis on the infinite symmetric group. In: Asymptotic Combinatorics with Applications to Mathematical Physics (A. Vershik, ed). Springer Lecture Notes in Math. 1815, 2003, pp. 127–160.

A.M. Vershik and S.V. Kerov, Asymptotic theory of characters of the symmetric group. Funct. Anal. Appl. 15 (1981), no. 4, 246–255.

A.M. Vershik and S.V. Kerov, The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of K0-functor for AF-algebas). In: Representations of Lie Groups and Related Topics. Advances in Contemp. Math., vol. 7 (A.M. Vershik and D.P. Zhelobenko, editors). New York, NY; London: Gordon and Breach, 1990, pp. 39–117.
听众
Advanced Undergraduate , Graduate , 博士后
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060