Quadratic Forms on Algebraic Varieties
Quadratic forms over a field is an old topic in mathematics, which really began with the pioneering work of Witt. The essential object to study is the Witt group, which is built by extensions of etale cohomology (Fields medal). It was Knebusch and Balmer who generalized the idea to algebraic varieties. To compute the Witt group, the Gersten-Witt spectral sequence is a powerful tool for low dimensional algebraic varieties. It was shown by Knebusch, Sujatha and Mahe that the free rank of Witt group of real algebraic varieties is equal to the number of Euclidean connected components of real points. The computation of Witt group of Grassmannian varieties by Balmer and Calmes initiated an enumerative geometry resulting in a quadratic form.
讲师
日期
2025年09月25日 至 2026年01月15日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周四 | 09:50 - 12:15 | A3-4-312 | ZOOM 04 | 482 240 1589 | BIMSA |
修课要求
Algebraic geometry
课程大纲
1. Witt group over a field, signatures, Clifford invariants, norm-residue theorem
2. Witt group of a triangulated category, pullback and pushforwards
2. Gersten-Witt spectral sequence and purity
3. Witt group of real curves and surfaces
4. Witt group of Grassmannians
2. Witt group of a triangulated category, pullback and pushforwards
2. Gersten-Witt spectral sequence and purity
3. Witt group of real curves and surfaces
4. Witt group of Grassmannians
听众
Graduate
, 博士后
, Researcher
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
杨南君,本科毕业于北京航空航天大学,硕士博士毕业于格勒诺布尔-阿尔卑斯大学,博士导师Jean Fasel。之后在丘成桐数学科学中心做博后,现在是BIMSA的助理研究员。研究方向为代数簇的Chow-Witt群。研究成果发表在Camb. J. Math., Ann. K-Theory等期刊上。