北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Quantum Spectral Curve and Analytic Bethe Ansatz \(ICBS\)
Quantum Spectral Curve and Analytic Bethe Ansatz
A typical feature of quantum integrable models is the possibility to construct and/or describe Bethe Algebra—a large family of commuting operators whose simultaneous diagonalisation fully controls the spectrum of the theory. We introduce rich combinatorial and geometrical features of the Bethe Algebra which are encoded through a variety of relations between Baxter Q-functions and which are universal for a variety of different models. The relations themselves turn out to be meaningful also in the situations when their derivation from the commutative algebra is not known or even possible. Being supplemented with the ansatz on the analytical structure of Q-functions, explicit equations can then be derived to encode the spectra of concrete physical models. Two examples are discussed in detail: One is rational spin chains where the obtained techniques turned out to be an extremely powerful computation tool which also, in certain cases, can be used to rigorously prove completeness of Bethe equations. The second one is AdS/CFT integrability - we will show how our general approach allows one to derive Quantum Spectral Curve that encodes the exact spectrum of planar N=4 SYM.
Professor Lars Aake Andersson
讲师
Dmytro Volin
日期
2024年05月29日 至 07月10日
位置
Weekday Time Venue Online ID Password
周一,周三 13:30 - 15:15 A3-4-101 ZOOM 07 559 700 6085 BIMSA
修课要求
Hamiltonian mechanics, quantum mechanics. Complex analysis. Lie groups, Lie algebras and root systems, supersymmetry, basics of commutative rings (brief recap will be offered). Symmetric polynomials and related combinatorics. Familiarity with algebraic Bethe Ansatz and construction of transfer matrices.
课程大纲
Part 1 - Bethe Algebra for rational GL(M|N) spin chains
[1] Introduction: computing spectrum of Heisenberg spin chain, with the help of integrability and without
[2] Fused flag structure of GL(M|N) QQ-system
[3] Proof of completeness of Wronskian Bethe equations. Fast analytic Bethe solver. Lazy numerical Bethe solver.
[4] Classification of unitary representatinos of SU(p,q|N) and non-compact Young diagrams. One-loop spectrum of AdS/CFT
[5] Separation of Variables for rational GL(M) spin chains

Part 2 - Bethe Algebra and fused flag geometry
[6] Recap of Lie algebras and root systems. Mutation games with Bethe equations and Weyl group.
[7] ODE/IM correspondence on the example of anharmonic oscillator
[8] ODE/IM correspondence, extended QQ-system, opers, and fused flags
[9] Bethe algebra for D-series using pure spinors. Beyond ADE.

Part 3 - AdS/CFT integrability
[10] History and main results
[11] Quantum Spectral Curve
[12] Monodromy bootstrap
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060