后量子密码 II
The most widely used nowadays are the number theoretical based cryptosystems such as RSA, DSA, and ECC. However, due to Peter Shor's Algorithm, such cryptosystems would become insecure if a large Quantum computer is built. We need to develop a new family of cryptosystems that can resist quantum computers attacks. Researchers usually use Post-Quantum Cryptography (PQC) to denote this new family. In the course, we will talk about Post-Quantum Cryptography.
讲师
陶成东
日期
2022年09月14日 至 12月14日
网站
修课要求
Mordern Cryptography, Coding Theory, C Programming Language
课程大纲
Code-based cryptography
1. Mathematical Background
2. Shannon's Theorem
3. Linear Codes
4. Some Good Codes
5. Bounds on Codes
6. Cyclic Codes
7. Perfect Codes and Uniformly Packed Codes
8. Goppa Codes
9. Algebraic Geometry Codes
10. Code-based Cryptosystems of NIST PQC ROUND 4
1. Mathematical Background
2. Shannon's Theorem
3. Linear Codes
4. Some Good Codes
5. Bounds on Codes
6. Cyclic Codes
7. Perfect Codes and Uniformly Packed Codes
8. Goppa Codes
9. Algebraic Geometry Codes
10. Code-based Cryptosystems of NIST PQC ROUND 4
参考资料
1. Introduction to Coding Theory J.H. van Lint, GTM86
2. Post-Quantum Cryptography Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen Editors
2. Post-Quantum Cryptography Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen Editors
听众
Graduate
视频公开
不公开
笔记公开
不公开
语言
中文
讲师介绍
2015年获华南理工大学应用数学专业博士学位,后任深圳华为技术有限公司研究工程师,2020年加入北京雁栖湖应用数学研究院,现任副研究员。主要研究兴趣:后量子密码学,计算数学,软件工程。拥有发明专利一项,发表多篇学术论文,并获得CRYPTO 2021 年度最佳论文荣誉提名以及行业顶级刊物Journal of Cryptology约稿。