北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 表示论中的Perverse schobers
表示论中的Perverse schobers
The goal of this course is to introduce the audience to the emerging field of perverse schobers in the language of Lurie's stable -categories and describe applications to the representation theory of dg-algebras.

In general, perverse schobers are a conjectural categorification of perverse sheaves, proposed by Kapranov-Schechtman.In the case of perverse schobers on surfaces with boundary, there has been much progress in developing a theory of perverse schobers, formulated in terms of constructible sheaves of enhanced triangulated categories on graphs. In the first four lectures,we will introduce this framework for the description of perverse schobers.We will see that perverse schobers offer the possibility of studying their categories of global sections via powerful local-to-global methods.

In the second part of the course,we will discuss examples of categories of global sections of perverse schober appearing in representation theory.These include the derived categories of gentle algebras and of (relative) Ginzburg algebras of surfaces. In particular,we will see how the perverse schober description leads to a description (of parts) of these derived categories in terms of curves in the surfaces, leading to the so called geometric models.

Plan:
Eight lectures, each 2x45 minutes.

•Lecture 1: Constructible sheaves, perverse sheaves and graphs in surfaces 2022-2-23

•Lecture 2: Reminder on stable∞-categories 2022-3-2

•Lecture 3: Spherical adjunctions, monadicity and examples 2022-3-9

•Lecture 4: Perverse schobers on surfaces via ribbon graphs 2022-3-16

•Lecture 5: topological Fukaya categories/gentle algebras via perverse schobers 2022-3-23

•Lectures 6-8: relative Ginzburg algebras of triangulated orn-angulated surfaces via per- verse schobers 2022-3-30&2022-4-6/13
组织者
邱宇
日期
2022年02月23日 至 04月13日
历史讲座
Perverse schobers in representation theory
演讲者: Merlin Christ
时间: 2022年04月13日 16:00 至 17:45
线上: Zoom 361 038 6975 密码: BIMSA
Perverse schobers in representation theory
演讲者: Merlin Christ
时间: 2022年04月06日 16:00 至 17:45
线上: Zoom 361 038 6975 密码: BIMSA
Perverse schobers in representation theory
演讲者: Merlin Christ
时间: 2022年03月30日 16:00 至 17:45
线上: Zoom 361 038 6975 密码: BIMSA
Perverse schobers in representation theory
演讲者: Merlin Christ
时间: 2022年03月23日 16:00 至 17:45
线上: Zoom 361 038 6975 密码: BIMSA
修课要求
Helpful: Knowledge about dg-categories and their model structures.

Required:Familiaritywith the language of categories as in [1] and with the basicsof the theory of triangulated categories.

Helpful, but will also be recalled: Basic knowledge about the theory of stable -categories as in [2]
参考资料
[1]J. Lurie.HigherToposTheory. Annals of Mathematics Studies, vol. 170, Princeton Uni- versity Press, Princeton, NJ. MR 2522659, 2009.

[2]J. Lurie.Higher Algebra. preprint,availableon the author’swebsite, 2017.

[3]M. Kapranov and V.Schechtman.Perverse Schobers.arXiv:1411.2772, 2014.

[4]T. Dyckerhoff, M. Kapranov, V.Schechtman,and Y. Soibelman. Spherical adjunctions of stable∞-categories and the relative S-construction.arXiv:2106.02873, 2021.

[5]M. Christ. Spherical monadic adjunctions of stable infinity categories.arXiv:2010.05294, 2020.

[6]M. Kapranov andV.Schechtmann.Perverse sheaves and graphs on surfaces.arXiv:1601.01789, 2016.

[7]M.Christ. Ginzburg algebras of triangulated surfaces and perverseschobers.arXiv:2101.01939, 2021.

[8]S. Opper,P.Plamondon, and S. Schroll. A geometric model of the derived category of a gentle algebra.arXiv:1801:09659, 2018.

[9]Y. Qiu. Decorated marked surfaces (part B): topological realizations.Math. Z. 288,39–53., 2018.

[10]Y. Qiu and Y. Zhou. Decorated marked surfaces II: Intersection numbers and dimensions of Homs.Trans.Amer.Math.Soc.372, 635–660, 2019.

[11]M. Christ. Geometric models for Ginzburg algebras ofn-angulated surfaces via local-to- global principles.arXiv:2107.10091, 2021.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060