北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Painlevé Equations and Symmetries – II \(ICBS\)
Painlevé Equations and Symmetries – II
This course is a second semester of the introductory course in the modern theory of Painlevé equations with the emphasis on the structure of symmetries (Bäcklund transformations) of these equations and construction of special solutions. Among the topics that we consider are the notion of the Okamoto Space of Initial Conditions, Hamiltonian structure of Painlevé equations, the Isomonodromic Deformations approach, and other selected topics.
Professor Lars Aake Andersson
讲师
安东·贾马伊
日期
2024年09月09日 至 12月04日
位置
Weekday Time Venue Online ID Password
周一,周三 13:30 - 15:05 A3-1-103 ZOOM 04 482 240 1589 BIMSA
修课要求
Undergraduate-level classes in Differential Equations, Complex Analysis, and Abstract Algebra are necessary, some basic knowledge of Algebraic Geometry and Elliptic Functions would be helpful. I will try to make the course as self-contained as possible. Since this course is a continuation (still moderately self-contained) on the Spring semester, I will assume the knowledge of: solving differential equations in the complex domain using the method of Frobenius (including the resonant cases), properties of the Gauss Hypergeometric Equation (including the connection formulae and the computation of the monodromy)
参考资料
1. Katsunori Iwasaki, Hironobu Kimura, Shun Shimomura, and Masaaki Yoshida; From Gauss to Painlevé: A Modern Theory of Special Functions; Aspects of Mathematics (ASMA) vol 16, Springer 1991
2. Robert Conte and Micheline Musette; The Painlevé Handbook (Mathematical Physics Studies); 2nd Edition, Springer 2020
3. Valerii I. Gromak, Ilpo Laine, and Shun Shimomura; Painlevé Differential Equations in the Complex Plane (De Gruyter Studies in Mathematics, 28); De Gruyter 2002
4. Masatoshi Noumi; Painlevé equations through symmetry, Translations of Mathematical Monographs, vol. 223, American Mathematical Society, Providence, RI, 2004.
5. Kazuo Okamoto; Studies on the Painlevé Equations I-V
6. Kazuo Okamoto; Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé; Japan. J. Math. (N.S.) 5(1979).
7. Kenji Kajiwara, Masatoshi Noumi, and Yasuhiko Yamada; Geometric aspects of Painlevé equations, J. Phys. A 50 (2017), no. 7, 073001, 164.
8. Hidetaka Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), no. 1, 165–229.
听众
Advanced Undergraduate , Graduate , 博士后
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Anton Dzhamay received his undergraduate education in Moscow where he graduated from the Moscow Institute of Electronics and Mathematics (MIEM) in 1993. He got his PhD from Columbia University under the direction of Professor Igor Krichever in 2000. After having postdoc and visiting positions at the University of Michigan and Columbia University, Anton moved to the University of Northern Colorado, getting tenure in 2011, becoming a Full Professor in 2016, and now transitioning to the Emeritus status in 2025. In 2023–2024 Anton was also a Visiting Professor at BIMSA, he became a permanent BIMSA faculty in Summer 2024 . His research interests are focused on the application of algebro-geometric techniques to integrable systems. Most recently he has been working on discrete integrable systems, Painlevé equations, and applications.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060