北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Orthogonal Polynomials, Double Affine Hecke Algebras, and Quantum Character Varieties
Orthogonal Polynomials, Double Affine Hecke Algebras, and Quantum Character Varieties
This is an introductory course on the Macdonald theory of orthogonal polynomials, Double Affine Hecke Algebras (DAHA), and their role in modern mathematics and physics. The main goal of the course is to provide foundational knowledge of orthogonal polynomials, preparing students to engage with modern research literature in representation theory, algebraic combinatorics, and related fields.

We will begin with the basics of Macdonald theory, introducing the ring of symmetric functions as well as Schur and Macdonald polynomials. A key highlight will be the connection between Macdonald polynomials and Dunkl operators, which arise naturally in the study of quantum many-body systems. Building on this foundation, we will explore Cherednik's nonsymmetric generalizations of orthogonal polynomials and introduce the Double Affine Hecke Algebra (DAHA).

In the final part of the course, we will uncover a surprising connection between DAHA and the geometry of quantum character varieties, which explains the action of the modular group $SL(2,Z)$ by automorphisms of DAHA. This interplay between algebra, geometry, and physics will provide a glimpse into the deep and beautiful structures underlying modern mathematical research.
Professor Lars Aake Andersson
讲师
赛蒙·阿尔塔莫诺夫
日期
2025年02月25日 至 05月20日
位置
Weekday Time Venue Online ID Password
周二,周四 10:40 - 12:15 A14-202 ZOOM 06 537 192 5549 BIMSA
修课要求
Undergraduate Abstract Algebra (required); Lie Algebras (recommended).
课程大纲
Tentative plan:

1. Symmetric functions
1.1 The ring of symmetric functions
1.2 Elementary symmetric functions, Complete Symmetric functions, and Power sums
1.4 Schur functions
1.3 Scalar product and orthogonal polynomials
2. Macdonald polynomials
2.1 Root systems and Weyl Characters
2.2 Scalar product
2.3 Macdonald polynomials
2.4 Dunkl operators
3. Nosymmetric Macdnomald polynomials
3.1 Cherednik's scalar product
3.2 Nonsymmetric Macdonald polynomials
3.3 Cherednik-Dunkl operators
4. Double Affine Hecke Algebras
4.1 Affine root systems
4.2 Duality and Fourier transforms
4.3 Applications to combinatorics and Macdonald constant term conjecture
4.4 Double Affine Hecke Algebras and Quantum Character varieties
参考资料
1) I.G.Macdonald Symmetric Functions and Orthogonal Polynomials. Vol. 12. American Mathematical Soc., 1998
2) I.Cherednik Double Affine Hecke Algebras Vol. 319. Cambridge University Press, 2005.
听众
Undergraduate , Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
I studied Applied Mathematics and Physics at the Moscow Institute of Physics and Technology, where I earned both my B.Sc. and M.Sc. degrees. In 2013, I joined the graduate program in Mathematics at Rutgers, The State University of New Jersey, and completed my Ph.D. in 2018 under the guidance of Prof. V. Retakh. After earning my doctorate, I held postdoctoral positions at the University of California Berkeley, the Centre de Recherches Mathématiques in Montreal, and the University of Toronto. In July 2024, I became an Associate Professor at the Beijing Institute of Mathematical Sciences and Applications (BIMSA)
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060