北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Optimal Transport I
Optimal Transport I
This course is meant to be a gentle introduction to optimal transport and will be the first part in a two-part course. In this course, we will discuss in detail the discrete Monge and Kantorovich problems and address various key points such as existence and uniqueness of solutions of such problems. We will also have a brief introduction to convex analysis and convex optimization in order to better understand the material. Then, we will delve into computational methods for discrete optimal transport such as the simplex method and the Sinkhorn algorithm arising from the entropically regularized optimal transport problem. Lastly, if time permits, we will briefly discuss explicit formulas for some optimal transport problems on the real line and finish with an introduction to the semi-discrete optimal transport problem.
日期
2025年09月16日 至 12月11日
位置
Weekday Time Venue Online ID Password
周二,周四 15:20 - 16:55 - - -
修课要求
Real analysis, linear algebra, basic measure theory, some coding experience
课程大纲
Week 1: Introduction to discrete Monge problem and introduction to discrete Kantorovich problem, first observations regarding existence issues for Monge problem uniqueness issues for Kantorovich problem
Week 2: Metric properties of (discrete) Wasserstein distance, convex analysis introduction
Week 3: Convex analysis introduction
Week 4: Convex optimization problems, introduction to linear programming
Week 5: Geometry of optimal transport for squared distance cost function, characterizing the minimizers of the Monge and Kantorovich problems
Week 6: Geometry of optimal transport for squared distance cost function, characterizing the minimizers of the Monge and Kantorovich problems
Week 7: Dual formulation of convex optimization problems and optimal transport problem, KKT conditions
Week 8: Discussion about other cost functions, introduction to numerical methods for optimal transport
Week 9: Simplex method for solving linear programming problems
Week 10: Entropic regularization of optimal transport, Sinkhorn algorithm
Week 11: Optimal transport on the real line
Week 12: Semi-discrete optimal transport
参考资料
1. Optimal Mass Transport on Euclidean Spaces by Maggi
2. Convex Analysis by Rockafellar
3. Convex Optimization by Boyd and Vanderberghe
4. Numerical Optimization by Nocedal and Wright
5. Computational Optimal Transport by Peyré and Cuturi
听众
Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060