北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Non-commutative differential calculus
Non-commutative differential calculus
A natural language for the calculus on a manifold or an algebraic variety is in terms of the corresponding algebras of functions, be it smooth or algebraic. The goal of non-commutative calculus is to extend the calculus to the case of associative algebras. While most of what is done below works in the case of $A_\infty$ algebras, we will, at least until the end, avoid the $\infty$-language.

Let $A$ be an algebra. Let $D$ be a derivation of $A$. When $A$ is commutative, say $A=C^\infty (M)$ for a smooth manifold $M$, $D$ is a vector field on $M$ and as such it acts on the de Rham complex $(\Omega^\bullet_M,d)$ by Lie derivative, as it does on any natural tensor construction applied to $A$. We will denote this action by $L_D$ .

One also defines the contraction $\iota_D$ by D and the classical calculus is summarised by the "change of variables" identities
\begin{equation}
[d, \iota_D]=L_D; \; \iota_D^2=0
\end{equation}Introducing a formal variable $u$ of degree $-2$, and working over power series $\mathbb{C}[[u]]$, one can combine these into a single identity
\begin{equation}
(ud+\iota_D)^2=uL_D\in End_{\mathbb{C}[[u]]}( \Omega^\bullet(M)[[u]])
\end{equation}Now let $A$ be an associative algebra and $D$ a derivation of $A$. The commonly used replacement for de Rham complex is the periodic cyclic complex where. In the first approximation, the differential graded space of differential forms get replaced by the Hochschild chain complex $(C_\bullet(A),b)$.


The counterpart of the classical Cartan formula above has the form
\begin{equation}
(b+uB+\mathcal{I}(D))^2=u(e^D-1)
\end{equation}where $I(D)$ is an exponential series $I(D)$. All the homogenous components $I_{D^n}$ of $\mathcal{I}(D)$ are defined over ${\mathbb Z}$. This is also a typical appearance of the Todd class $D^{-1} (e^D-1)$, which seems to appear whenever one replaces total anti-symmetrisation with cyclic anti-symmetrisation as in cyclic homology.

We will spend some time studying cyclic periodic complex and and some of its immediate applications, the first one being the Chern character from topological/algebraic K-theory to topological/negative cyclic homology.

We will also spend some time with the symplicial approach to cyclic homology, restricting ourselves to algebras over field of characteristic zero.

The classical calculus has an immediate extension from vector fields to multi-vector fields, generalising the standard formulas
\begin{equation}\label{L and iota func}
\iota_f(\omega)=f\omega; L_f(\omega)=df\wedge \omega
\end{equation}for a function $f$ and a form $\omega$. The noncommutative Cartan calculus extends to the full DGA (differential graded algebra) of Hochschild cochains, where the appropriate notion seems to be that of calculus. We will spend some time describing the appearing structures and give some explicit formulas. We will apply these methods to algebraic index theorems and their analytic counterparts.

The course will be based partially on the introduction to the non-commutative geometry chapter of the Encyclopedia of Mathematical Physics and the preliminary book version (see Boris Tsygan homepage).
Professor Lars Aake Andersson
讲师
Ryszard Nest
日期
2024年10月23日 至 12月11日
位置
Weekday Time Venue Online ID Password
周三,周五 10:40 - 12:15 A3-2-301 ZOOM 11 435 529 7909 BIMSA
修课要求
Some differential geometry, homological algebra and a smattering of symplicial topology. Some ideas related to algebraic K-theory will be used.
课程大纲
Calculus on manifolds
Non-commutative calculus
Cyclic complexes
Hochschild cochain complex
Operations on cyclic complexes
The Cartan calculus of derivations
Noncommutative calculus of multi-vector fields and forms
Applications:
Some computations, Chern character, the Goodwillie rigidity,
deformation quantisation and algebraic index theorems.
听众
Advanced Undergraduate , Graduate , 博士后
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060