Motivic Cohomology
Motivic cohomology, originated from Deligne, Beilinson and Lichtenbaum and developed by Voevodsky, is a kind of cohomology theory on schemes. It admits comparison with étale cohomology of powers of roots of unity (Beilinson-Lichtenbaum), together with higher Chow groups, and relates to K-theory by Atiyah-Hirzebruch spectral sequence. In this lecture, we establish the category of motives in which the motivic cohomologies are realized. We explain its relationship with Milnor K-theory and Chow group. Furthermore, we introduce devices like MV-sequence, Gysin triangle, projective bundle formula and duality.
讲师
日期
2022年03月16日 至 06月08日
网站
修课要求
Basic algebraic geometry (GTM 52, Chapter 1-3)
参考资料
C. Mazza, V. Voevodsky, C. Weibel, Lecture Notes on Motivic Cohomology, American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA (2006).
视频公开
公开
笔记公开
公开
讲师介绍
杨南君,本科毕业于北京航空航天大学,硕士博士毕业于格勒诺布尔-阿尔卑斯大学,博士导师Jean Fasel。之后在丘成桐数学科学中心做博后,现在是BIMSA的助理研究员。研究方向为代数簇的Chow-Witt群。研究成果发表在Camb. J. Math., Ann. K-Theory等期刊上。