北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > The Moment-SOS hierarchy and the Christoffel function to address non convexity
The Moment-SOS hierarchy and the Christoffel function to address non convexity
【June 30 & July 1, 1:00pm - 2:30pm at A3-3-301 of BIMSA】

The Moment-SOS Hierarchy and its applications
Roughly speaking, the Generalized Problem of Moments (GPM) is an infinite-dimensional linear optimization problem (i.e., an infinite dimensional linear program) on (possibly several) convex sets of measures whose supports are basic semi-algebraic sets. From a theoretical viewpoint, the GPM has developments
and impact in various area of Mathematics like Real algebraic geometry, Fourier analysis, functional analysis, operator theory, probability and statistics, to cite a few. In addition, and despite its rather simple and short formulation, the GPM has a large number of important applications in various fields like optimization, probability, mathematical finance, optimal control, control and signal processing, chemistry, cristallography, tomography, quantum information & computing, etc.
In its full generality, the GPM is untractable numerically. However when its data are algebraic, then the situation is much nicer. Indeed, the Moment-SOS hierarchy is a systematic numerical scheme based on a sequence of (convex) semidefinite programs of increasing size whose associated monotone sequence
of optimal values converges to the optimal value of the GPM. Sometimes (e.g. in global optimization) finite convergence takes place and is generic.
In the talk, we will introduce the Moment-SOS hierarchy, and briefly describe several of its applications, notably in optimization, probability & statistics, optimal control and PDEs ....

【July 8 & July 10, 2:00pm - 3:30pm at B627 of Shuangqing Building】

The Christoffel Function: Some applications, Connections and Extensions
Even though the Christoffel function (CF) is well-known in approximation theory and orthogonal polynomials, it is only recently that some of its remarkable properties have been shown to be useful in some other applications, like data analysis and mining (e.g. for outlier detection and support inference), and approximation of possibly discontinuous functions with no Gibbs phenomenon. So in this talk we will briefly introduce the CF and describe how some of its main features can be exploited in some applications. Moreover we will also describe connections of the CF with seemingly unrelated fields, like positive polynomials, Pell’s equation and equilibrium measure of compact sets, and if time permits, we will introduce some variants with interesting additional properties.
Professor Lars Aake Andersson
讲师
Jean-Bernard Lasserre
日期
2025年06月30日 至 07月10日
视频公开
不公开
笔记公开
不公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060